Abstract
We analytically find an approximate Bloch–Messiah reduction of a noncollinear parametric amplifier pumped with a focused monochromatic beam. We consider type I phase matching. The results are obtained using a perturbative expansion and scaled to the high-gain regime. They allow for a straightforward maximization of the signal gain and minimization of the parametric fluorescence noise. We find the fundamental mode of the amplifier, which is an elliptic Gaussian defining the optimal seed beam shape. We conclude that the output of the amplifier should be stripped of higher-order modes, which are approximately Hermite–Gaussian beams. Alternatively, the pump waist can be adjusted such that the amount of noise produced in the higher-order modes is minimized.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Dubietis, G. Jonušauskas, A. Piskarskas, Opt. Commun. 88, 437 (1992)
A. Dubietis, R. Butkus, A. Piskarskas, IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006)
I.N. Ross, P. Matousek, G.H.C. New, K. Osvay, J. Opt. Soc. Am. B 19, 2945 (2002)
F. Tavella, A. Marcinkevicius, F. Krausz, Opt. Express 14, 12822 (2006)
G. Arisholm, J. Opt. Soc. Am. B 16, 117 (1999)
F. Tavella, K. Schmid, N. Ishii, A. Marcinkevicius, L. Veisz, F. Krausz, Appl. Phys. B 81, 753 (2005)
F. Tavella, A. Marcinkevicius, F. Krausz, New J. Phys. 8, 219 (2006)
A. Gatti, H. Wiedemann, L.A. Lugiato, I. Marzoli, G.-L. Oppo, S.M. Barnett, Phys. Rev. A 56, 877 (1997)
S.L. Braunstein, Phys. Rev. A 71, 055801 (2005). arXiv:quant-ph/9904002
R. Danielius, A. Piskarskas, P.D. Trapani, A. Andreoni, C. Solcia, P. Fog, Opt. Lett. 21, 973 (1996)
Y.B. Band, C. Radzewicz, J.S. Krasinski, Phys. Rev. A 49, 517 (1994)
R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 2000)
R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, New York, 2003)
W. Wasilewski, A.I. Lvovsky, K. Banaszek, C. Radzewicz, Phys. Rev. A 73, 063819 (2006). arXiv:quant-ph/0512215
P. Kolenderski, W. Wasilewski, K. Banaszek, Phys. Rev. A 80, 013811 (2009). arXiv:0905.0009
A. Dragan, Phys. Rev. A 70, 053814 (2004). arXiv:quant-ph/0407113
A.B. Uren, K. Banaszek, I. Walmsley, arXiv:quant-ph/0305192 (2003)
J. Chwedenczuk, W. Wasilewski, Phys. Rev. A 78, 063823 (2008). arXiv:0804.3245v1
F.A. Barone, H. Boschi-Filho, C. Farina, Am. J. Phys. 71, 483 (2003). arXiv:quant-ph/0205085
L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)
J.P. Torres, G. Molina-Terriza, L. Torner, J. Opt., B Quantum Semiclass. Opt. 7, 235 (2005)
A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412, 313 (2001)
J. Leach, M.J. Padgett, S.M. Barnett, S. Franke-Arnold, J. Courtial, Phys. Rev. Lett. 88, 257901 (2002)
J.P. Torres, Y. Deyanova, L. Torner, G. Molina-Terriza, Phys. Rev. A 67, 052313 (2003)
S.P. Walborn, S. Pádua, C.H. Monken, Phys. Rev. A 71, 053812 (2005). arXiv:quant-ph/0407216
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Migdał, P., Wasilewski, W. Noise reduction in 3D noncollinear parametric amplifier. Appl. Phys. B 99, 657–671 (2010). https://doi.org/10.1007/s00340-010-3915-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-010-3915-z