Skip to main content
Log in

Advanced metal alloy systems for massive high-current photocathodes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The physical principles of precise alloying are formulated with the aim of increasing the low quantum efficiency (QE) of suitable simple metals (Mg, Al, Cu) as well as of decreasing their electron work function (e φ) in the UV spectral range. The new approach provides valuable information for elucidating the origin of photoemission enhancement in bulk metal-based alloy systems. Bulk in-situ nanoclustering promises to be the most effective way of producing a much higher QE and a lower e φ in simple metals. In this article we show that the quantum efficiency of the metal-based alloys Mg–Ba, Al–Li, and Cu–BaO is considerably higher than the simple metals Mg, Al, and Cu, respectively.

The spectral characteristics of the Mg–Ba, Al–Li and Cu–BaO systems obey the well-known Fowler square law for a near-free-electron model. The advanced metal alloys systems are promising photocathode materials usable for generation of high brightness electron beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Wang, T. Srinivasan Rao, K. Batchelor, I. Ben-Zvi, J. Fischer, Nucl. Instrum. Methods A 356, 159 (1995)

    Article  ADS  Google Scholar 

  2. X.J. Wang, M. Babzien, K. Batchelor, I. Ben-Zvi, R. Malone, I. Pogorelsky, X. Qui, J. Sheehan, J. Sharitka, T. Srinivasan-Rao, Nucl. Instrum. Methods A 375, 82 (1996)

    Article  ADS  Google Scholar 

  3. X.J. Wang, M. Babzien, K. Batchelor, I. Ben-Zvi, R. Malone, I. Pogorelsky, X. Qui, J. Sheehan, J. Sharitka, T. Srinivasan-Rao, IEEE Trans. Nucl. Sci. 32, 1791 (1985)

    Article  Google Scholar 

  4. E. Endruschat, J. Hamisk, H. Loch, H. Niedrig, W. Tornow, in Proc. Techn. Vortrb. Int. Kongr.: Laser & Opto-Electron, Munchen, Dez. 1983 (Berlin, 1984), p. 19

  5. T. Nakajyo, J. Yang, F. Sakai, Y. Aoki, Jpn. J. Appl. Phys. 42, 1470 (2003)

    Article  ADS  Google Scholar 

  6. T. Rao, A. Burrill, X.Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F.E. Hannon, C.K. Sinclair, J. Lewellen, D. Feldman, Nucl. Instrum. Methods A 557, 124 (2006)

    Article  ADS  Google Scholar 

  7. E. Chevallay, J. Durand, S. Hutchins, G. Suberlucq, M. Wurgel, Nucl. Instrum. Methods A 340, 146 (1994)

    Article  ADS  Google Scholar 

  8. D.T. Palmer, X.J. Wang, R.H. Miller, M. Babzien, I. Ben-Zvi, C. Pellegrini, J. Sheehan, J. Skaritka, H. Winick, M. Woodle, V. Yakimenko, in Proc. 17th IEEE Particle Accelerator Conference (PAC 97). Accelerator Science, Technology and Applications, vol. 3, Vancouver, British Columbia, Canada, 12–16 May (1997), p. 2687

  9. X.J. Wang, M. Babzien, R. Malone, Z. Wu, in Proc. LINAC02, Gyeongju, Korea (2002), p. 142

  10. M. Boussoukaya, H. Bergeret, R. Chehab, B. Leblond, J. Le Duff, Nucl. Instrum. Methods A 279, 405 (1989)

    Article  ADS  Google Scholar 

  11. L. Ding, Y. Chen, Z.Y. Hua, J. Nucl. Mater. 200(3), 305 (1993)

    Article  Google Scholar 

  12. R. Weismann, K. Muller, Surf. Sci. Rep. 1, 251 (1981)

    Article  Google Scholar 

  13. J. Yang, T. Kondoh, Y. Yoshida, S. Tagawa, Jpn. J. Appl. Phys. 44, 8702 (2005)

    Article  ADS  Google Scholar 

  14. V.G. Tkachenko, I.N. Maksimchuk, P.Yu. Volosevich, N.K. Lashuk, A.N. Malka, V.V. Friezel, High Temp. Mater. Process. 25(1–2), 97 (2006)

    Google Scholar 

  15. V.G. Tkachenko, I.I. Schuljak, A.M. Strutinski, Activation analysis of the structural clustering transformations in metal hydride–forming system, in Hydrogen Materials Science and Chemistry of Metal Hydrides, ed. by N. Veziroglu et al. (Kluwer, Amsterdam, 2002), p. 77

    Google Scholar 

  16. V.G. Tkachenko, A.I. Kondrashev, V.I. Lazorenko, G.V. Lashkarev, V.I. Trefilov, Phys. Dokl. 44(8), 548 (1999) (Translated from Dokl. Akad. Nauk 367(4–6) 1999)

    ADS  Google Scholar 

  17. L. Armand, J.L. Bouillot, L. Gaudart, Surf. Sci. 86, 75 (1979)

    Article  ADS  Google Scholar 

  18. R.H. Fowler, Phys. Rev. 38, 45 (1931)

    Article  ADS  MATH  Google Scholar 

  19. A.H. Sommer, Photoemissive Materials: Preparation, Properties, and Uses (Wiley, New York, 1968)

    Google Scholar 

  20. L. Cultrera, G. Gatti, P. Miglietta, F. Tazzioli, A. Perrone, Nucl. Instrum. Methods A 587, 7 (2008)

    Article  ADS  Google Scholar 

  21. V. Nassisi, A. Donateo, L. Martina, G. Raganato, in Proceedings of the 7th European Particle Accelerator Conference, ed. by J.L. Laclare, W. Mitaroff, Ch. Petit-Jenaz, J. Poole, M. Regler, Austria Center Vienna, 26–30 June (2000), p. 2364

  22. T. Srinivasan-Rao, J. Fischer, T. Tsang, J. Appl. Phys. 69, 3291 (1991)

    Article  ADS  Google Scholar 

  23. T. Srinivasan-Rao, I. Ben-Zvi, J. Smedley, X.J. Wang, M. Woodle, in IEEE (1998), p. 2790

  24. P.I. Feibelman, Prog. Surf. Sci. 12, 287 (1982)

    Article  ADS  Google Scholar 

  25. S.R. Barman, Phys. Rev. B 57(11), 6662 (1998)

    Article  ADS  Google Scholar 

  26. W.J. Pardee, Phys. Rev. B 11(10), 3614 (1975)

    Article  ADS  Google Scholar 

  27. V.G. Tkachenko, I.N. Maksimchuk, V.V. Shklover, Appl. Phys. A: Mater. Sci. Process. 62(3), 285 (1996)

    Article  ADS  Google Scholar 

  28. S.W. Downey, L.A. Builta, D.C. Moir, T.J. Ringler, J.D. Saunders, Appl. Phys. Lett. 49, 911 (1986). doi:10.1063/1.97532

    Article  ADS  Google Scholar 

  29. M. Cardonna, L. Ley, in Photoemission in Solids 1, ed. by M. Cardonna, L. Ley (Springer, New York, 1978), p. 22

    Google Scholar 

  30. C.N. Berglund, W.E. Spicer, Phys. Rev. A 136, 1044 (1964)

    Article  ADS  Google Scholar 

  31. B.B. Shishkin, I. Buribaev, Radiotekh. Elektron. 19(9), 1948 (1974)

    Google Scholar 

  32. T. Kasuya, in Magnetism, ed. by G.T. Rado, vol. 2B (Academic Press, London, 1966), p. 215

    Google Scholar 

  33. W.E. Spicer, A. Herrera-Gomes, Modern theory and applications of photocathodes. In Proceedings of Int. Sympos. on Optics, Imaging and Instrumentation, San Diego, CA, July (1993)

  34. A. di Bona, F. Sabary, S. Valeri, P. Michelato, D. Sertore, J. Appl. Phys. 80, 5 (1996)

    Google Scholar 

  35. C.H. Lee, P.E. Oettinger, E.R. Pugh, R. Klinkowstein, J.H. Jacob, J.S. Fraser, R.L. Sheffield, IEEE Trans. Nucl. Sci. NS-32(3), 3045 (1985)

    Article  ADS  Google Scholar 

  36. D. Sertore, S. Schreiber, K. Floettmann, F. Stephan, K. Zapfe, P. Michelato, Nucl. Instrum. Methods A 445, 422 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Tkachenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachenko, V.G., Kondrashev, A.I. & Maksimchuk, I.N. Advanced metal alloy systems for massive high-current photocathodes. Appl. Phys. B 98, 839–849 (2010). https://doi.org/10.1007/s00340-009-3887-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3887-z

Keywords

Navigation