Skip to main content

Advertisement

Log in

On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The temperature profile in the upper ocean mixed layer is of great interest for oceanography, weather forecast and climate studies—especially regarding the strong coupling between the atmosphere and the ocean. A lidar system based on Brillouin-scattering can provide such data over an extended region of the ocean. In this paper we report on studies of an excited-state Faraday anomalous dispersion optical (ESFADOF) edge-filter that, when employed as a receiver in a Brillouin-lidar, will enable range-resolved remote measurements from mobile platforms. We focus on the transmission of such a filter operating on the 5P 3/2→8D 5/2 Rb transition (543.30 nm), and its dependence on the vapor density in the high pump intensity regime. Due to quenching processes such as energy-pooling enhanced by nonlinear radiation trapping, as well as plasma formation, a limit on the lower ESFADOF level number density exists. Beyond this threshold the achievable ESFADOF transmission is limited to a few percent. However, our studies show for the first time measured ESFADOF spectra with steep transmission edges with a transmission change of 15% within a few gigahertz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Hickman, J.M. Harding, M. Carnes, A. Pressman, G.W. Kattawar, E.S. Fry, Remote Sens. Environ. 36, 165 (1991)

    Article  Google Scholar 

  2. J.L. Guagliardo, H.L. Dufilho, Rev. Sci. Instrum. 51, 79 (1980)

    Article  ADS  Google Scholar 

  3. G.D. Hickman, J.E. Hogg, Remote Sens Environ. 1, 47 (1969)

    Article  Google Scholar 

  4. G.C. Guenther, A.G. Cunningham, P.E. LaRocque, D.J. Reid, in Proc. EARSeL-SIG-Workshop: LIDAR, vol. 1 (2000), pp. 1–27

  5. E.S. Fry, Y. Emery, X. Quan, J.W. Katz, Appl. Opt. 36, 6887 (1997)

    Article  ADS  Google Scholar 

  6. Y. Emery, E.S. Fry, Proc. SPIE, Ocean Opt. XIII 2963, 210 (1996)

    ADS  Google Scholar 

  7. E.S. Fry, J. Katz, R. Nicolaescu, Th. Walther, Remote sensing in the ocean: Measurement of sound speed and temperature, in Proc. SPIE, Ocean Optics XIV (1998)

  8. E.S. Fry, J. Katz, D. Liu, Th. Walther, J. Mod. Opt. 49, 411 (2002)

    Article  ADS  Google Scholar 

  9. K. Schorstein, A. Popescu, M. Göbel, T. Walther, Sensors 8, 5820 (2008)

    Article  Google Scholar 

  10. K. Schorstein, Th. Walther, Appl. Phys. B 97, 591 (2009)

    Article  ADS  Google Scholar 

  11. K. Schorstein, E.S. Fry, Th. Walther, Appl. Phys. B 97, 931 (2009)

    Article  ADS  Google Scholar 

  12. S.W. Henderson, Laser Remote Sensing (CRC Taylor & Francis, Boca Raton, 2005)

    Google Scholar 

  13. C.L. Korb, B.M. Gentry, C.Y. Weng, Appl. Opt. 31, 4202 (1992)

    Article  ADS  Google Scholar 

  14. E.S. Fry, Brillouin-lidar receiver based on absorption in I2 and Br2. Tech. rep., Physics Department Texas A&M University (1992)

  15. A. Popescu, K. Schorstein, Th. Walther, Appl. Phys. B 79, 955 (2004)

    Article  ADS  Google Scholar 

  16. A. Popescu, D. Walldorf, K. Schorstein, Th. Walther, Opt. Commun. 264, 475 (2006)

    Article  ADS  Google Scholar 

  17. K. Schorstein, G. Scheich, A. Popescu, T. Walther, E.S. Fry, Laser Phys. 17, 975 (2007)

    Article  ADS  Google Scholar 

  18. J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, D. Liu, Appl. Phys. B 86, 177 (2007)

    Article  ADS  Google Scholar 

  19. J. Shi, M. Ouyang, W. Gong, S. Li, D. Liu, Appl. Phys. B 90, 569 (2008)

    Article  ADS  Google Scholar 

  20. A. Popescu, Th. Walther, Laser Phys. 15, 55 (2005)

    Google Scholar 

  21. Y. Ohman, Stockh. Obs. Ann. 19, 3 (1956)

    ADS  Google Scholar 

  22. P. Yeh, Appl. Opt. 21, 2069 (1981)

    Article  ADS  Google Scholar 

  23. B. Yin, L.S. Alvarez, T.M. Shay, Rb. The, TDA Progress Rep. 42, 116 (1994)

    Google Scholar 

  24. H. Chen, C.Y. She, P. Searcy, E. Korevaar, Opt. Lett. 18, 1019 (1993)

    Article  ADS  Google Scholar 

  25. R.I. Billmers, S.K. Gayen, M.F. Squicciarini, V.M. Contarino, W.J. Scharpf, Opt. Lett. 20, 106 (1995)

    Article  ADS  Google Scholar 

  26. G. Yang, R.I. Billmers, P.R. Herczfeld, V.M. Contarino, Opt. Lett. 22, 414 (1997)

    Article  ADS  Google Scholar 

  27. C. Fricke-Begemann, M. Alpers, J. Höffner, Opt. Lett. 27, 1932 (2002)

    Article  ADS  Google Scholar 

  28. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, J. Höffner, Atmos. Chem. Phys. 4, 793 (2004)

    Article  ADS  Google Scholar 

  29. J. Höffner, C. Fricke-Begemann, Opt. Lett. 30, 890 (2005)

    Article  ADS  Google Scholar 

  30. R.M. Pope, E.S. Fry, Appl. Opt. 36, 8710 (1997)

    Article  ADS  Google Scholar 

  31. H.M. Pask, R.J. Carman, D.C. Hanna, A.C. Tropper, C.J. Mackechnie, P.R. Barber, J.M. Dawes, IEEE J. Sel. Top. Quantum Electron. 1, 2 (1995)

    Article  Google Scholar 

  32. T. Führer, Th. Walther, Opt. Lett. 33, 372 (2008)

    Article  ADS  Google Scholar 

  33. L. Barbier, M. Cheret, J. Phys. B: At. Mol. Phys. 16, 3213 (1983)

    Article  ADS  Google Scholar 

  34. R.L. Kurucz, B. Bell, 1995 atomic line data, Kurucz CD-ROM, 23 (1995)

  35. C.-J. Lorenzen, K. Niemax, Phys. Scr. 27, 300 (1983)

    Article  ADS  Google Scholar 

  36. B.M. Smirnov, A.S. Yatsenko, Physics Uspekhi 39, 211 (1996)

    Article  ADS  Google Scholar 

  37. T. Stacewicz, T. Kotowski, P. Wiewiór, J. Choräzy, Opt. Commun. 100, 99 (1993)

    Article  ADS  Google Scholar 

  38. J. Choräzy, T. Kotowski, T. Stacewicz, Opt. Commun. 125, 65 (1996)

    Article  ADS  Google Scholar 

  39. R.M. Measures, J. Quant. Spectrosc. Radiat. Transfer 10, 107 (1970)

    Article  ADS  Google Scholar 

  40. T.B. Lucatorto, T.J. McIlrath, Appl. Opt. 19, 3948 (1980)

    Article  ADS  Google Scholar 

  41. W.C. Stwalley, J.T. Bahns, Laser Part. Beams 11, 185 (1993)

    Article  ADS  Google Scholar 

  42. D. Pappas, B.W. Smith, N. Omenettó, J.D. Winefordner, Appl. Spectrosc. 54, 1245 (2000)

    Article  ADS  Google Scholar 

  43. I. Saha, P. Nikolaou, N. Whiting, B.M. Goodson, Chem. Phys. Lett. 428, 268 (2006)

    Article  ADS  Google Scholar 

  44. T. Scholz, J. Welzel, W. Lange, Phys. Rev. 64, 1 (2001)

    Google Scholar 

  45. M. Cheret, L. Barbier, W. Lindinger, R. Deloche, J. Phys. B: At. Mol. Phys. 15, 3463 (1982)

    Article  ADS  Google Scholar 

  46. L. Barbier, M. Cheret, J. Phys. B: At. Mol. Phys. 20, 1229 (1987)

    Article  ADS  Google Scholar 

  47. L. Barbier, A. Pesnelle, M. Cheret, J. Phys. B: At. Mol. Phys. 20, 1249 (1987)

    Article  ADS  Google Scholar 

  48. A.C. Tam, ACS Symp. Ser. 179, 447 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, A., Walther, T. On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime. Appl. Phys. B 98, 667–675 (2010). https://doi.org/10.1007/s00340-009-3857-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3857-5

Keywords

Navigation