Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers

Abstract

It is shown that the ‘flower-like’ emission patterns along the perimeter of broad-area circular vertical-cavity surface-emitting lasers can be interpreted in a first approximation as annular standing waves. Their modulation period follows the dispersion relation of tilted plane waves for a plano-planar cavity. For high enough divergence angle, they show a very peculiar polarization behavior of radial polarization in near field and azimuthal polarization in far field. The polarization selection is qualitatively explained by the breaking of the isotropy between s- and p-components for waves propagating off axis in the Bragg reflectors.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Grabherr, M. Miller, R. Jäger, D. Wiedenmann, R. King, Proc. SPIE 5364, 174 (2004)

    Article  ADS  Google Scholar 

  2. 2.

    H. Li, T.L. Lucas, J.G. McInerney, R.A. Morgan, Chaos, Solitons, Fractals 4, 1619 (1994)

    Article  Google Scholar 

  3. 3.

    C. Degen, I. Fischer, W. Elsäßer, Opt. Express 5, 38 (1999)

    Article  ADS  Google Scholar 

  4. 4.

    M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H.J. Unold, K.J. Ebeling, IEEE J. Sel. Top. Quantum Electron. 5(3), 495 (1999)

    Article  Google Scholar 

  5. 5.

    T. Ackemann, S. Barland, M. Cara, S. Balle, J.R. Tredicce, R. Jäger, P.M. Grabherr, M. Miller, K.J. Ebeling, J. Opt. B, Quantum Semiclass. Opt. 2, 406 (2000)

    Article  ADS  Google Scholar 

  6. 6.

    S.F. Pereira, M.B. Willemsen, M.P. van Exter, J.P. Woerdman, Opt. Commun. 179, 485 (2000)

    Article  ADS  Google Scholar 

  7. 7.

    J. Scheuer, M. Orenstein, D. Arbel, J. Opt. Soc. Am. B 19, 2384 (2002)

    Article  ADS  Google Scholar 

  8. 8.

    T. Gensty, K. Becker, I. Fischer, W. Elsässer, C. Degen, P. Debernardi, G. Bava, Phys. Rev. Lett. 94, 233991 (2005)

    Article  Google Scholar 

  9. 9.

    G. Grynberg, A. Maître, A. Petrossian, Phys. Rev. Lett. 72, 2379 (1994)

    Article  ADS  Google Scholar 

  10. 10.

    T. Ackemann, Y. Logvin, A. Heuer, W. Lange, Phys. Rev. Lett. 75, 3450 (1995)

    Article  ADS  Google Scholar 

  11. 11.

    M. Le Berre, D. Leduc, E. Ressayre, A. Tallet, A. Maître, Opt. Commun. 118, 447 (1995)

    Article  ADS  Google Scholar 

  12. 12.

    S.P. Hegarty, G. Huyet, J.G. McInerney, K.D. Choquette, Phys. Rev. Lett. 82, 1434 (1999)

    Article  ADS  Google Scholar 

  13. 13.

    K.F. Huang, Y.F. Chen, H.C. Lai, Y.P. Lan, Phys. Rev. Lett. 89, 224102 (2002)

    Article  ADS  Google Scholar 

  14. 14.

    M. Schulz-Ruhtenberg, I.V. Babushkin, N.A. Loiko, T. Ackemann, K.F. Huang, Appl. Phys. B 81, 945 (2005)

    Article  ADS  Google Scholar 

  15. 15.

    C.J. Chang-Hasnain, J.P. Harbison, G. Hasnain, A. Von Lehmen, L.T. Florez, N.G. Stoffel, IEEE J. Quantum Electron. 27, 1402 (1991)

    Article  ADS  Google Scholar 

  16. 16.

    K.D. Choquette, R.P. Schneider Jr., K.L. Lear, R.E. Leibenguth, IEEE J. Sel. Top. Quantum Electron. 1, 661 (1995)

    Article  Google Scholar 

  17. 17.

    M. San Miguel, Q. Feng, J.V. Moloney, Phys. Rev. A 52, 1728 (1995)

    Article  ADS  Google Scholar 

  18. 18.

    M.P. van Exter, A. Al-Remawi, J.P. Woerdman, Phys. Rev. Lett. 80, 4875 (1998)

    Article  ADS  Google Scholar 

  19. 19.

    T. Ackemann, M. Sondermann, Appl. Phys. Lett. 78, 3574 (2001)

    Article  ADS  Google Scholar 

  20. 20.

    Y.F. Chen, K.F. Huang, H.C. Lai, Y.P. Lan, Phys. Rev. Lett. 90, 053904 (2003)

    Article  ADS  Google Scholar 

  21. 21.

    I.V. Babushkin, M. Schulz-Ruhtenberg, N.A. Loiko, K.F. Huang, T. Ackemann, Phys. Rev. Lett. 100, 213901 (2008)

    Article  ADS  Google Scholar 

  22. 22.

    L. Fratta, P. Debernardi, G.P. Bava, C. Degen, J. Kaiser, I. Fischer, W. Elsäßer, Phys. Rev. A 64, 031803(R) (2001)

    Article  ADS  Google Scholar 

  23. 23.

    T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Opt. Lett. 33, 122 (2008)

    Article  ADS  Google Scholar 

  24. 24.

    J.-L. Li, K.-I. Ueda, L.-X. Zhong, M. Musha, A. Shirakawa, T. Sato, Opt. Express 16, 10841 (2008)

    Article  ADS  Google Scholar 

  25. 25.

    M. Schulz-Ruhtenberg, PhD thesis, Westfälische Wilhelms-Universität Münster, 2008

  26. 26.

    M. Sondermann, M. Weinkath, T. Ackemann, IEEE J. Quantum Electron. 40, 97 (2004)

    Article  ADS  Google Scholar 

  27. 27.

    P.K. Jakobsen, J.V. Moloney, A.C. Newell, R. Indik, Phys. Rev. A 45, 8129 (1992)

    Article  ADS  Google Scholar 

  28. 28.

    D. Rodríguez, I. Esquivias, S. Deubert, J.P. Reithmaier, A. Forchel, M. Krakowski, M. Calligaro, O. Parillaud, IEEE J. Quantum Electron. 41, 117 (2005)

    Article  ADS  Google Scholar 

  29. 29.

    S. Adachi, J. Appl. Phys. 58(3), R1 (1985)

    Article  ADS  Google Scholar 

  30. 30.

    C.-H. Jiang, PhD thesis, National Chiao Tung University, 2004

  31. 31.

    I.V. Babushkin, N.A. Loiko, T. Ackemann, Influence of inhomogeneities on wavelength selection of flower-like patterns in wide-aperture lasers, in Nonlinear Guided Waves and Their Applications, Toronto, March 28–31, 2004. Paper TuC38

  32. 32.

    T. Ackemann, W. Grosse-Nobis, G.L. Lippi, Opt. Commun. 189, 5 (2001)

    Article  ADS  Google Scholar 

  33. 33.

    N.A. Loiko, I.V. Babushkin, J. Opt. B, Quantum Semiclass. Opt. 3, S234 (2001)

    Article  ADS  Google Scholar 

  34. 34.

    N.A. Loiko, I.V. Babushkin, Quantum Electron. 31(3), 221 (2001)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Ackemann.

Additional information

M. Schulz-Ruhtenberg now at: Fraunhofer Institute for Laser Technology, Steinbachstr. 15, 52074 Aachen, Germany

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulz-Ruhtenberg, M., Tanguy, Y., Jäger, R. et al. Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers. Appl. Phys. B 97, 397 (2009). https://doi.org/10.1007/s00340-009-3718-2

Download citation

PACS

  • 42.60.Jf
  • 42.25.Ja
  • 42.55.Px