Applied Physics B

, 97:397 | Cite as

Length scales and polarization properties of annular standing waves in circular broad-area vertical-cavity surface-emitting lasers

  • M. Schulz-Ruhtenberg
  • Y. Tanguy
  • R. Jäger
  • T. Ackemann
Article

Abstract

It is shown that the ‘flower-like’ emission patterns along the perimeter of broad-area circular vertical-cavity surface-emitting lasers can be interpreted in a first approximation as annular standing waves. Their modulation period follows the dispersion relation of tilted plane waves for a plano-planar cavity. For high enough divergence angle, they show a very peculiar polarization behavior of radial polarization in near field and azimuthal polarization in far field. The polarization selection is qualitatively explained by the breaking of the isotropy between s- and p-components for waves propagating off axis in the Bragg reflectors.

PACS

42.60.Jf 42.25.Ja 42.55.Px 

References

  1. 1.
    M. Grabherr, M. Miller, R. Jäger, D. Wiedenmann, R. King, Proc. SPIE 5364, 174 (2004) CrossRefADSGoogle Scholar
  2. 2.
    H. Li, T.L. Lucas, J.G. McInerney, R.A. Morgan, Chaos, Solitons, Fractals 4, 1619 (1994) CrossRefGoogle Scholar
  3. 3.
    C. Degen, I. Fischer, W. Elsäßer, Opt. Express 5, 38 (1999) CrossRefADSGoogle Scholar
  4. 4.
    M. Grabherr, M. Miller, R. Jäger, R. Michalzik, U. Martin, H.J. Unold, K.J. Ebeling, IEEE J. Sel. Top. Quantum Electron. 5(3), 495 (1999) CrossRefGoogle Scholar
  5. 5.
    T. Ackemann, S. Barland, M. Cara, S. Balle, J.R. Tredicce, R. Jäger, P.M. Grabherr, M. Miller, K.J. Ebeling, J. Opt. B, Quantum Semiclass. Opt. 2, 406 (2000) CrossRefADSGoogle Scholar
  6. 6.
    S.F. Pereira, M.B. Willemsen, M.P. van Exter, J.P. Woerdman, Opt. Commun. 179, 485 (2000) CrossRefADSGoogle Scholar
  7. 7.
    J. Scheuer, M. Orenstein, D. Arbel, J. Opt. Soc. Am. B 19, 2384 (2002) CrossRefADSGoogle Scholar
  8. 8.
    T. Gensty, K. Becker, I. Fischer, W. Elsässer, C. Degen, P. Debernardi, G. Bava, Phys. Rev. Lett. 94, 233991 (2005) CrossRefGoogle Scholar
  9. 9.
    G. Grynberg, A. Maître, A. Petrossian, Phys. Rev. Lett. 72, 2379 (1994) CrossRefADSGoogle Scholar
  10. 10.
    T. Ackemann, Y. Logvin, A. Heuer, W. Lange, Phys. Rev. Lett. 75, 3450 (1995) CrossRefADSGoogle Scholar
  11. 11.
    M. Le Berre, D. Leduc, E. Ressayre, A. Tallet, A. Maître, Opt. Commun. 118, 447 (1995) CrossRefADSGoogle Scholar
  12. 12.
    S.P. Hegarty, G. Huyet, J.G. McInerney, K.D. Choquette, Phys. Rev. Lett. 82, 1434 (1999) CrossRefADSGoogle Scholar
  13. 13.
    K.F. Huang, Y.F. Chen, H.C. Lai, Y.P. Lan, Phys. Rev. Lett. 89, 224102 (2002) CrossRefADSGoogle Scholar
  14. 14.
    M. Schulz-Ruhtenberg, I.V. Babushkin, N.A. Loiko, T. Ackemann, K.F. Huang, Appl. Phys. B 81, 945 (2005) CrossRefADSGoogle Scholar
  15. 15.
    C.J. Chang-Hasnain, J.P. Harbison, G. Hasnain, A. Von Lehmen, L.T. Florez, N.G. Stoffel, IEEE J. Quantum Electron. 27, 1402 (1991) CrossRefADSGoogle Scholar
  16. 16.
    K.D. Choquette, R.P. Schneider Jr., K.L. Lear, R.E. Leibenguth, IEEE J. Sel. Top. Quantum Electron. 1, 661 (1995) CrossRefGoogle Scholar
  17. 17.
    M. San Miguel, Q. Feng, J.V. Moloney, Phys. Rev. A 52, 1728 (1995) CrossRefADSGoogle Scholar
  18. 18.
    M.P. van Exter, A. Al-Remawi, J.P. Woerdman, Phys. Rev. Lett. 80, 4875 (1998) CrossRefADSGoogle Scholar
  19. 19.
    T. Ackemann, M. Sondermann, Appl. Phys. Lett. 78, 3574 (2001) CrossRefADSGoogle Scholar
  20. 20.
    Y.F. Chen, K.F. Huang, H.C. Lai, Y.P. Lan, Phys. Rev. Lett. 90, 053904 (2003) CrossRefADSGoogle Scholar
  21. 21.
    I.V. Babushkin, M. Schulz-Ruhtenberg, N.A. Loiko, K.F. Huang, T. Ackemann, Phys. Rev. Lett. 100, 213901 (2008) CrossRefADSGoogle Scholar
  22. 22.
    L. Fratta, P. Debernardi, G.P. Bava, C. Degen, J. Kaiser, I. Fischer, W. Elsäßer, Phys. Rev. A 64, 031803(R) (2001) CrossRefADSGoogle Scholar
  23. 23.
    T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Opt. Lett. 33, 122 (2008) CrossRefADSGoogle Scholar
  24. 24.
    J.-L. Li, K.-I. Ueda, L.-X. Zhong, M. Musha, A. Shirakawa, T. Sato, Opt. Express 16, 10841 (2008) CrossRefADSGoogle Scholar
  25. 25.
    M. Schulz-Ruhtenberg, PhD thesis, Westfälische Wilhelms-Universität Münster, 2008 Google Scholar
  26. 26.
    M. Sondermann, M. Weinkath, T. Ackemann, IEEE J. Quantum Electron. 40, 97 (2004) CrossRefADSGoogle Scholar
  27. 27.
    P.K. Jakobsen, J.V. Moloney, A.C. Newell, R. Indik, Phys. Rev. A 45, 8129 (1992) CrossRefADSGoogle Scholar
  28. 28.
    D. Rodríguez, I. Esquivias, S. Deubert, J.P. Reithmaier, A. Forchel, M. Krakowski, M. Calligaro, O. Parillaud, IEEE J. Quantum Electron. 41, 117 (2005) CrossRefADSGoogle Scholar
  29. 29.
    S. Adachi, J. Appl. Phys. 58(3), R1 (1985) CrossRefADSGoogle Scholar
  30. 30.
    C.-H. Jiang, PhD thesis, National Chiao Tung University, 2004 Google Scholar
  31. 31.
    I.V. Babushkin, N.A. Loiko, T. Ackemann, Influence of inhomogeneities on wavelength selection of flower-like patterns in wide-aperture lasers, in Nonlinear Guided Waves and Their Applications, Toronto, March 28–31, 2004. Paper TuC38 Google Scholar
  32. 32.
    T. Ackemann, W. Grosse-Nobis, G.L. Lippi, Opt. Commun. 189, 5 (2001) CrossRefADSGoogle Scholar
  33. 33.
    N.A. Loiko, I.V. Babushkin, J. Opt. B, Quantum Semiclass. Opt. 3, S234 (2001) CrossRefADSGoogle Scholar
  34. 34.
    N.A. Loiko, I.V. Babushkin, Quantum Electron. 31(3), 221 (2001) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. Schulz-Ruhtenberg
    • 1
  • Y. Tanguy
    • 2
  • R. Jäger
    • 3
  • T. Ackemann
    • 2
  1. 1.Institut für Angewandte PhysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.SUPA and Department of PhysicsUniversity of StrathclydeScotlandUK
  3. 3.ULM PhotonicsUlmGermany

Personalised recommendations