Skip to main content

Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks

Abstract

The formation of three dimensional (3D) photonic microstructures by the locally selective dissolution of metal clusters embedded in dielectric multilayer stacks is presented. Dissolution of clusters is performed by the simultaneous application of electric field and temperature. The produced photonic structures show a highly tailorable optical behavior that combines the interferential effects of multilayer stacks and the surface plasmon resonance of non-dissolved metal clusters. Due to its feasibility and the possibility to widely modify the optical properties of the resulting structures, the current approach represents a promising method for the production of novel components based on 3D-metallodielectric photonic structures.

This is a preview of subscription content, access via your institution.

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters. Springer Series in Material Science. Springer, Berlin (1995)

    Google Scholar 

  2. A. Moroz, Phys. Rev. Lett. 83, 5274 (1999)

    Article  ADS  Google Scholar 

  3. J.-H. Lee, Y.-S. Kim, K. Constant, K.-M. Ho, Adv. Mater. 19, 791 (2007)

    Article  Google Scholar 

  4. R.A. Shelby, D.R. Smith, S. Schulz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  5. H.M. Chen, L. Pang, A. Kher, Y. Fainman, Appl. Phys. Lett. 94, 073117 (2009)

    Article  ADS  Google Scholar 

  6. S.Y. Lin, S. Moreno, G.R. Fleming, Appl. Phys. Lett. 83, 380 (2003)

    Article  ADS  Google Scholar 

  7. J.R. Krenn, Nat. Mater. 2, 210 (2003)

    Article  ADS  Google Scholar 

  8. A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, Appl. Phys. A 80, 164 (2005)

    Article  Google Scholar 

  9. Y. Wang, M. Ibisate, A.-Y. Li, Y. Xia, Adv. Mater. 18, 471 (2006)

    Article  Google Scholar 

  10. A. Hohenau, H. Ditlbacher, B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Microelectron. Eng. 83, 1464 (2006)

    Article  Google Scholar 

  11. A. Podlipensky, A. Abdolvand, G. Seifer, H. Graener, O. Deparios, P.G. Kazansky, J. Phys. Chem. B 108, 17699 (2004)

    Article  Google Scholar 

  12. F.P. Mezzapesa, I.C.S. Carvalho, P.G. Kazansky, O. Deparis, M. Kawazu, K. Sakaguchi, Appl. Phys. Lett. 89(18), 183121 (2006)

    Article  ADS  Google Scholar 

  13. Z. Zou, X. Chen, Q. Wang, S. Qu, X. Wang, J. Appl. Phys. 104, 113113 (2008)

    Article  ADS  Google Scholar 

  14. J. Sancho-Parramon, V. Janicki, J. Arbiol, H. Zorc, F. Peiró, Appl. Phys. Lett. 92, 163108 (2008)

    Article  ADS  Google Scholar 

  15. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, H. Graener, Adv. Mater. 17, 2983 (2005)

    Article  Google Scholar 

  16. A.A. Lipovskii, M. Kuittinen, P. Karvinen, K. Leinonen, V.G. Melehin, V.V. Zhurikhina, Y.P. Svirko, Nanotechnology 19, 415304 (2008)

    Article  Google Scholar 

  17. S. Kachan, O. Stenzel, A. Ponyavina, App. Phys. B: Lasers Opt. 84, 281 (2006)

    Article  ADS  Google Scholar 

  18. P. Heger, O. Stenzel, N. Kaiser, Proc. SPIE 21, 5250 (2004)

    Google Scholar 

  19. O. Deparis, P.G. Kazansky, A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, J. Appl. Phys. 100, 044318 (2006)

    Article  ADS  Google Scholar 

  20. H. Graener, A. Abdolvand, S. Wackerow, O. Kiriyenko, W. Hergert, Phys. Stat. Sol. (a) 204, 3838 (2007)

    Article  Google Scholar 

  21. M. Leitner, H. Peterlik, B. Sepiol, H. Graener, M. Beleites, G. Seifert, Phys. Rev. B 79, 153408 (2009)

    Article  ADS  Google Scholar 

  22. J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, F. Syrowatka, Appl. Opt. 45, 8874 (2006)

    Article  ADS  Google Scholar 

  23. A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, P. Kazansky, Opt. Express 13, 1266 (2005)

    Article  ADS  Google Scholar 

  24. M.X. Yang, P.W. Jacobs, C. Yoon, L. Muray, E. Anderson, D. Attwood, G.A. Somorjai, Catal. Lett. 45, 5 (1997)

    Article  Google Scholar 

  25. E.D. Palik, Handbook of Optical Constants (Academic Press, San Diego, 1991)

    Google Scholar 

  26. J. Sancho-Parramon, V. Janicki, J. Phys. D, Appl. Phys. 41, 215304 (2008)

    Article  ADS  Google Scholar 

  27. R.V. Ramaswamy, R. Srivastava, J. Lightwave Tech. 6, 984 (1988)

    Article  ADS  Google Scholar 

  28. C.K. Carniglia, D.G. Jensen, Appl. Opt. 41, 3167 (2002)

    Article  ADS  Google Scholar 

  29. Z. Kral, L. Vojkuvka, E. García-Caurel, J. Ferré-Borrull, L.F. Marsal, J. Pallarés, Photonics Nanostruct. 7, 12 (2009)

    Article  ADS  Google Scholar 

  30. Z. Kral, J. Ferré-Borrull, T. Trifonov, L.F. Marsal, A. Rodriguez, J. Pallares, R. Alcubilla, Thin Solid Films 516, 8059 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Janicki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janicki, V., Sancho-Parramon, J., Peiró, F. et al. Three-dimensional photonic microstructures produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks. Appl. Phys. B 98, 93–98 (2010). https://doi.org/10.1007/s00340-009-3705-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3705-7

PACS

  • 68.65.Ac
  • 36.40.Vz
  • 42.25.Hz
  • 42.79.-e
  • 81.07.-b