Skip to main content
Log in

Gallium-arsenide deep-center laser

  • Rapid communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In a novel approach to “thresholdless” lasers, we have developed a new growth technique for self-assembled deep centers in the technologically important semiconductor gallium-arsenide. Here we demonstrate the first gallium-arsenide deep-center laser. These lasers, which intentionally utilize gallium-arsenide deep-center transitions, exhibit a threshold of less than 2 A/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This threshold is much lower than for bandgap transitions in conventional bulk semiconductors. It is significant that this first demonstration of broad-area laser action was accomplished with electrical injection, and not merely optical pumping, as is usual for a new material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, Y.H. Lee, Science 305, 1444 (2004)

    Article  ADS  Google Scholar 

  2. G.P. Agrawal, N.K. Dutta, Long-Wavelength Semiconductor Lasers (Reinhold, New York, 1986)

    Google Scholar 

  3. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Muench, A. Loeffler, M. Kamp, J.P. Reithmaier, V.D. Kulakovskii, A. Forchel, Appl. Phys. Lett. 89, 051107 (2006)

    Article  ADS  Google Scholar 

  4. K.J. Luo, J.Y. Xu, H. Cao, Y. Ma, S.H. Chang, S.T. Ho, G.S. Solomon, Appl. Phys. Lett. 78, 3397 (2001)

    Article  ADS  Google Scholar 

  5. M. Gupta, J.L. Pan, J. Appl. Phys. (2009, in review)

  6. J.L. Pan, J.E. McManis, M. Gupta, M.P. Young, J.M. Woodall, Appl. Phys. A 90, 105 (2008)

    Article  ADS  Google Scholar 

  7. E.W. Williams, Phys. Rev. 168, 922 (1968)

    Article  ADS  Google Scholar 

  8. H. Lei, H.S. Leipner, V. Bondarenko, J. Schreiber, J. Phys., Condens. Matter 16, S279 (2004)

    Article  ADS  Google Scholar 

  9. M. Tajima, R. Toba, N. Ishida, M. Warashina, Mater. Sci. Tech. 13, 949 (1997)

    Google Scholar 

  10. M.A. Reshchikov, A.A. Gutkin, V.E. Sedov, Mater. Sci. Forum 196–201, 237 (1995)

    Article  Google Scholar 

  11. M. Suezawa, A. Kasuya, Y. Nishina, K. Sumino, J. Appl. Phys. 69, 1618 (1991)

    Article  ADS  Google Scholar 

  12. J.K. Kung, W.G. Spitzer, J. Appl. Phys. 45, 4477 (1974)

    Article  ADS  Google Scholar 

  13. S.Y. Chiang, G.L. Pearson, J. Lumin. 10, 313 (1975)

    Article  Google Scholar 

  14. T. Sauncy, C.P. Palsule, M. Holtz, S. Gangopadhyay, S. Massie, Phys. Rev. B 53, 1900 (1996)

    Article  ADS  Google Scholar 

  15. M. Suezawa, A. Kasuya, Y. Nishina, K. Sumino, J. Appl. Phys. 76, 1164 (1994)

    Article  ADS  Google Scholar 

  16. Ph. Ebert, Current Opin. Solid State Mater. Sci. 5, 211 (2001)

    Article  Google Scholar 

  17. J. Gebauer, M. Lausmann, T.E.M. Staab, R. Krause-Rehberg, M. Hakala, M.J. Puska, Phys. Rev. B 60, 1464 (1999)

    Article  ADS  Google Scholar 

  18. C. Domke, Ph. Ebert, K. Urban, Phys. Rev. B 57, 4482 (1998)

    Article  ADS  Google Scholar 

  19. C. Domke, Ph. Ebert, M. Heinrich, K. Urban, Phys. Rev. B 54, 10288 (1996)

    Article  ADS  Google Scholar 

  20. J. Gebauer, R. Krause-Rehberg, C. Domke, Ph. Ebert, K. Urban, Phys. Rev. Lett. 78, 3334 (1997)

    Article  ADS  Google Scholar 

  21. F.M. Vorobkalo, K.D. Glinchuk, A.V. Prokhorovich, G. John, Phys. Stat. Sol. (a) 15, 287 (1973)

    Article  Google Scholar 

  22. F.M. Vorobkalo, K.D. Glinchuk, A.V. Prokhorovich, Phys. Stat. Sol. (a) 7, 135 (1971)

    Article  Google Scholar 

  23. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  24. Y. Yamamoto, R.E. Slusher, Phys. Today 46, 66 (1993)

    Article  Google Scholar 

  25. N.B. Rex, R.K. Chang, L.J. Guido, IEEE Photonics Technol. Lett. 13, 1 (2001)

    Article  ADS  Google Scholar 

  26. S. Chang, N.B. Rex, R.K. Chang, G. Chong, L.J. Guido, Appl. Phys. Lett. 75, 166 (1999)

    Article  ADS  Google Scholar 

  27. S. Ates, S.M. Ulrich, P. Michler, S. Reitzenstein, A. Loeffler, A. Forchel, Appl. Phys. Lett. 90, 161111 (2007)

    Article  ADS  Google Scholar 

  28. H.S. Djie, B.S. Ooi, X.-M. Fang, Y. Wu, J.M. Fastenau, W.K. Liu, Opt. Lett. 32, 44 (2007)

    Article  ADS  Google Scholar 

  29. C.L. Tan, Y. Wang, H.S. Djie, B.S. Ooi, Appl. Phys. Lett. 91, 061117 (2007)

    Article  ADS  Google Scholar 

  30. A. Markus, J.X. Chen, C. Paranthoen, A. Fiore, C. Platz, O. Gauthier-Lafaye, Appl. Phys. Lett. 82, 1818 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Pan, J.L. Gallium-arsenide deep-center laser. Appl. Phys. B 96, 719–725 (2009). https://doi.org/10.1007/s00340-009-3618-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3618-5

PACS

Navigation