Skip to main content
Log in

Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced incandescence (LII) was used to derive temperatures of pulsed laser heated soot particles from their thermal emission intensities detected at two wavelengths in a laminar ethylene/air co-annular diffusion flame. The results are compared to those of a numerical nanoscale heat and mass transfer model. Both aggregate and primary particle soot size distributions were measured using transmission electron microscopy (TEM). The model predictions were numerically averaged over these experimentally derived size distributions. The excitation laser wavelength was 532 nm, and the LII signal was detected at 445 nm and 780 nm. A wide range of laser fluence from very low to moderate (0.13 to 1.56 mJ/mm2) was used in the experiments. A large part of the temporal decay curve, beginning 12–15 nsec after the peak of the laser excitation pulse, is successfully described by the model, resulting in the determination of accommodation coefficients, which varies somewhat with soot temperature and is in the range of 0.36 to 0.46. However, in the soot evaporative regime, the model greatly overpredicts the cooling rate shortly after the laser pulse. At lower fluences, where evaporation is negligible, the initial experimental cooling rates, immediately following the laser pulse, are anomalously high. Potential physical processes that could account for these effects are discussed. From the present data the soot absorption function, E(m), of 0.4 at 532 nm is obtained. A procedure for correcting the measured signals for the flame radiation is presented. It is further shown that accounting for the local gas temperature increase due to heat transfer from soot particles to the gas significantly improves the agreement in the temperature dependence of soot cooling rates between model and experiments over a large range of laser fluences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B, Lasers Opt. 83(3), 333 (2006)

    Article  ADS  Google Scholar 

  2. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaim Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B, Lasers Opt. 87(3), 503 (2007)

    Article  ADS  Google Scholar 

  3. A.C. Eckbreth, J. Appl. Phys. 48(11), 4473 (1977)

    Article  ADS  Google Scholar 

  4. L.A. Melton, Appl. Opt. 23(13), 2201 (1984)

    Article  ADS  Google Scholar 

  5. C.J. Dasch, Proc. Combust. Inst. 20, 1231 (1984)

    Google Scholar 

  6. H.A. Michelsen, J. Chem. Phys. 118(15), 7012 (2003)

    Article  ADS  Google Scholar 

  7. A.V. Filippov, M. Zurita, D.E. Rosner, J. Colloid Interface Sci. 229(1), 261 (2000)

    Article  Google Scholar 

  8. F. Liu, G.J. Smallwood, D.R. Snelling, J. Quant. Spectrosc. Radiat. Transf. 93, 301 (2005)

    Article  ADS  Google Scholar 

  9. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B, Lasers Opt. 83(3), 383 (2006)

    Article  ADS  Google Scholar 

  10. V. Beyer, D.A. Greenhalgh, Appl. Phys. B, Lasers Opt. 83(3), 455 (2006)

    Article  ADS  Google Scholar 

  11. A. Boiarciuc, F. Foucher, C. Mounaim Rousselle, Appl. Phys. B, Lasers Opt. 83(3), 413 (2006)

    Article  ADS  Google Scholar 

  12. S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44(34), 7414 (2005)

    Article  ADS  Google Scholar 

  13. T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 2, 2585 (2004)

    Google Scholar 

  14. M. Charwath, R. Suntz, H. Bockhorn, Appl. Phys. B, Lasers Opt. 83(3), 435 (2006)

    Article  ADS  Google Scholar 

  15. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147(1–2), 79 (2006)

    Article  Google Scholar 

  16. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B, Lasers Opt. 83(3), 355 (2006)

    Article  ADS  Google Scholar 

  17. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44(31), 6773 (2005)

    Article  ADS  Google Scholar 

  18. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38(12), 2478 (1999)

    Article  ADS  Google Scholar 

  19. Ö.L. Gülder, D.R. Snelling, R.A. Sawchuk, Proc. Combust. Inst. 26, 2351 (1996)

    Google Scholar 

  20. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transfer Trans. ASME 123(4), 814 (2001)

    Article  Google Scholar 

  21. K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 138(1–2), 195 (2004)

    Article  Google Scholar 

  22. K. Tian, K.A. Thomson, F. Liu, D.R. Snelling, G.J. Smallwood, D.S. Wang, Combust. Flame 144(4), 782 (2006)

    Article  Google Scholar 

  23. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136(1–2), 180 (2004)

    Article  Google Scholar 

  24. E. Therssen, Y. Bouvier, C. Schoemaecker Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Appl. Phys. B, Lasers Opt. 89(2–3), 417 (2007)

    ADS  Google Scholar 

  25. T.C. Bond, R.W. Bergstrom, Aerosol Sci. Technol. 40(1), 1 (2006)

    Article  Google Scholar 

  26. H.A. Michelsen, Appl. Phys. B, Lasers Opt. 94(1), 103 (2009)

    Article  ADS  Google Scholar 

  27. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120(4), 439 (2000)

    Article  Google Scholar 

  28. H. Chang, T.T. Charalampopoulos, Proc. R. Soc. Lond., Ser. A 430(1880), 577 (1990)

    Article  ADS  Google Scholar 

  29. E.H. Kennard, Kinetic Theory of Gases (McGraw Hill, New York, 1938)

    Google Scholar 

  30. A.S. Cukrowski, S. Fritzsche, Ann. Phys. 48(6), 377 (1991)

    Article  Google Scholar 

  31. C.J. Knight, AIAA J. 17(5), 519 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Kelly, R.W. Dreyfus, Surf. Sci. 198(1–2), 263 (1988)

    Article  ADS  Google Scholar 

  33. R.W. Dreyfus, R. Kelly, R.E. Walkup, Nucl. Instrum. Methods Phys. Res., Sect. B Beam Interact. Mater. At. 4, 557 (1987)

    ADS  Google Scholar 

  34. A.V. Gusarov, A.G. Gnedovets, I. Smurov, J. Appl. Phys. 88(7), 4352 (2000)

    Article  ADS  Google Scholar 

  35. R. Kelly, A. Miotello, A. Mele, A.G. Guidoni, J.W. Hastie, P.K. Schenck, H. Okabe, Appl. Surf. Sci. 133(4), 251 (1998)

    Article  ADS  Google Scholar 

  36. C.J. Knight, AIAA J. 20(7), 950 (1982)

    Article  ADS  Google Scholar 

  37. G.A. Lukyanov, Y. Khang, D.V. Leshchev, S.V. Kozyrev, A.N. Volkov, N.Y. Bykov, O.I. Vakulova, Fuller. Nanotub. Carbon Nanostruct. 14(2–3), 507 (2006)

    Article  Google Scholar 

  38. G.A. Lukyanov, A.N. Volkov, Y. Khang, S.V. Kozyrev, D.V. Leshchev, N.Y. Bykov, O.I. Vakulova, J. Phys., Conf. Ser. 59, 164 (2007)

    Article  ADS  Google Scholar 

  39. R. Kelley, A. Miotello, Nucl. Instrum. Methods Phys. Res. B 91, 682 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Thomson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snelling, D.R., Thomson, K.A., Liu, F. et al. Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame. Appl. Phys. B 96, 657–669 (2009). https://doi.org/10.1007/s00340-009-3614-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3614-9

PACS

Navigation