Skip to main content
Log in

Multiple-scattering speckle in holographic optical coherence imaging

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the effect of multiple scattering on the image quality of holographic optical coherence imaging, which is a full-field coherence-domain imaging form of optical coherence tomography. The speckle holograms from turbid media and from multicellular tumor spheroids are characterized by high-contrast speckle on a multiply-scattered background caused by channel cross-talk. We quantify the multiple-scattered light that is accepted by the holographic coherence gate, and identify a cross-over from single-scattered to multiple-scattered light beyond 15 to 20 optical thicknesses. Speckle reduction relies on vibrating diffusers and on fast adaptive holograms in photorefractive quantum well devices. The high anisotropy factor for tumor tissue reduces multiply-scattered light contributions for biomedical tumor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.V. Tuchin, Coherence-domain methods in tissue and cell optics. Laser Phys. 8, 807–849 (1998)

    Google Scholar 

  2. J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003)

    Article  Google Scholar 

  3. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  4. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafto, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178 (1991)

    Article  ADS  Google Scholar 

  5. J.M. Schmitt, A. Knüttel, R.F. Bonner, Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl. Opt 32, 6032–6042 (1993)

    Article  ADS  Google Scholar 

  6. E. Beaurepaire, A.C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, Full-field optical coherence microscopy. Opt. Lett. 23, 244 (1998)

    Article  ADS  Google Scholar 

  7. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, C. Boccara, Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43, 2874–2883 (2004)

    Article  ADS  Google Scholar 

  8. S.C.W. Hyde, R. Jones, N.P. Barry, J.C. Dainty, P.M.W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Depth-resolved holography through turbid media using photorefraction. IEEE J. Sel. Top. Quantum Electron. 2, 965 (1996)

    Article  Google Scholar 

  9. R. Jones, M. Tziraki, P.M.W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices. Opt. Express 2, 438 (1998)

    ADS  Google Scholar 

  10. M. Tziraki, R. Jones, P.M.W. French, M.R. Melloch, D.D. Nolte, Photorefractive holography for imaging through turbid media using low coherence light. Appl. Phys. B 70, 151 (2000)

    Article  ADS  Google Scholar 

  11. C. Dunsby, P.M.W. French, Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D: Appl. Phys. 36, R207–R227 (2003)

    Article  ADS  Google Scholar 

  12. D.D. Nolte, T. Cubel, L.J. Pyrak-Nolte, M.R. Melloch, Adaptive beam combining and interferometry using photorefractive quantum wells. J. Opt. Soc. Am. B 18, 195–205 (2001)

    Article  ADS  Google Scholar 

  13. M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes. Appl. Phys. Lett. 75, 363–65 (1999)

    Article  Google Scholar 

  14. D.D. Nolte, Semi-insulating semiconductor heterostructures: optoelectronic properties and applications. J. Appl. Phys. 85, 6259 (1999)

    Article  ADS  Google Scholar 

  15. R.M. Brubaker, Q.N. Wang, D.D. Nolte, M.R. Melloch, Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors. Phys. Rev. Lett. 77, 4249–52 (1996)

    Article  ADS  Google Scholar 

  16. K.M. Kwolek, M.R. Melloch, D.D. Nolte, G.A. Brost, Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry. Appl. Phys. Lett. 67, 736 (1995)

    Article  ADS  Google Scholar 

  17. P. Yu, L. Peng, M. Mustata, J.J. Turek, M.R. Melloch, D.D. Nolte, Time-dependent speckle in holographic optical coherence imaging and the state of health of tumor tissue. Opt. Lett. 29, 68–70 (2004)

    Article  ADS  Google Scholar 

  18. P. Yu, M. Mustata, L.L. Peng, J.J. Turek, M.R. Melloch, P.M.W. French, D.D. Nolte, Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids. Appl. Opt. 43, 4862–4873 (2004)

    Article  ADS  Google Scholar 

  19. P. Yu, M. Mustata, P.M.W. French, J.J. Turek, M.R. Melloch, D.D. Nolte, Holographic optical coherence imaging of tumor spheroids. Appl. Phys. Lett. 83, 575 (2003)

    Article  ADS  Google Scholar 

  20. K. Jeong, L. Peng, J.J. Turek, M.R. Melloch, D.D. Nolte, Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye. Appl. Opt. 44, 1798–1806 (2005)

    Article  ADS  Google Scholar 

  21. K. Jeong, L.L. Peng, D.D. Nolte, M.R. Melloch, Fourier-domain holography in photorefractive quantum-well films. Appl. Opt. 43, 3802–3811 (2004)

    Article  ADS  Google Scholar 

  22. K. Jeong, J.J. Turek, M.R. Melloch, D.D. Nolte, Functional imaging in photorefractive tissue speckle holography. Opt. Commun. 281, 1860–1869 (2008)

    Article  ADS  Google Scholar 

  23. D.D. Steele, B.L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Rockel, S.R. Marder, Transillumination imaging through scattering media by use of photorefractive polymers. Opt. Lett. 23, 153–155 (1998)

    Article  ADS  Google Scholar 

  24. R. Mahon, W.S. Rabinovich, M. Bashkansky, S.R. Bowman, K. Ikossi-Anastasiou, D.S. Katzer, Depth-gated imaging using lock-in holography. J. Opt. Soc. Am. B: Opt. Phys. 19, 1685–1691 (2002)

    Article  ADS  Google Scholar 

  25. E. Mecher, F. Gallego-Gomez, H. Tillmann, H.H. Horhold, J.C. Hummelen, K. Meerholz, Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002)

    Article  ADS  Google Scholar 

  26. P. Dean, M.R. Dickinson, D.P. West, Full-field coherence-gated holographic imaging through scattering media using a photorefractive polymer composite device. Appl. Phys. Lett. 85, 363–365 (2004)

    Article  ADS  Google Scholar 

  27. G. Ramos-Ortiz, M. Cha, B. Kippelen, G.A. Walker, S. Barlow, S.R. Marder, Direct imaging through scattering media by use of efficient third-harmonic generation in organic materials. Opt. Lett. 29, 2515–2517 (2004)

    Article  ADS  Google Scholar 

  28. P. Dean, M.R. Dickinson, D.P. West, Depth-resolved holographic imaging through scattering media by use of a photorefractive polymer composite device in the near infrared. Opt. Lett. 30, 1941–1943 (2005)

    Article  ADS  Google Scholar 

  29. A. Kabir, A.M. Ajward, H.P. Wagner, Holographic imaging using the phase coherent photorefractive effect in ZnSe quantum wells. Appl. Phys. Lett. 93 (2008)

  30. K. Jeong, J.J. Turek, D.D. Nolte, Fourier-domain digital holographic optical coherence imaging of living tissue. Appl. Opt. 46, 4999–5008 (2007)

    Article  ADS  Google Scholar 

  31. K. Jeong, J.J. Turek, D.D. Nolte, Imaging motility contrast in digital holography of tissue response to cytoskeletal anti-cancer drugs. Opt. Express 15, 14057 (2007)

    Article  ADS  Google Scholar 

  32. U. Schnars, W.P.O. Juptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R85–R101 (2002)

    Article  ADS  Google Scholar 

  33. M.C. Potcoava, M.K. Kim, Optical tomography for biomedical applications by digital interference holography. Meas. Sci. Technol. 19 (2008)

  34. S.G. Adie, T.R. Hillman, D.D. Sampson, Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors. Opt. Express 15, 18033–18049 (2007)

    Article  ADS  Google Scholar 

  35. B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, P. Lambelet, Multiple scattering in optical coherence tomography, II: experimental and theoretical investigation of cross talk in wide-field optical coherence tomography. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 22, 1380–1388 (2005)

    Article  ADS  Google Scholar 

  36. J.M. Schmitt, S.H. Xiang, K.M. Yung, Speckle in optical coherence tomography. J. Biomed. Opt. 4, 95–105 (1999)

    Article  ADS  Google Scholar 

  37. M.R. Hee, J.A. Izatt, J.M. Jacobson, J.G. Fujimoto, E.A. Swanson, Femtosecond transillumination optical coherence tomography. Opt. Lett. 18, 950 (1993)

    Article  ADS  Google Scholar 

  38. S. Balasubramanian, I. Lahiri, Y. Ding, M.R. Melloch, D.D. Nolte, Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings. Appl. Phys. B 68, 863–9 (1999)

    Article  ADS  Google Scholar 

  39. L.A. Kunz-Schughart, Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol. Int. 23, 157–161 (1999)

    Article  Google Scholar 

  40. M.T. Santini, G. Rainaldi, Three-dimensional spheroid model in tumor biology. Pathobiology 67, 148–157 (1999)

    Article  Google Scholar 

  41. M. Marusic, Z. Bajzer, J.P. Freyer, S. Vuk-Pavlovic, Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif. 27, 73–94 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Nolte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, K., Turek, J.J., Melloch, M.R. et al. Multiple-scattering speckle in holographic optical coherence imaging. Appl. Phys. B 95, 617–625 (2009). https://doi.org/10.1007/s00340-009-3561-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3561-5

PACS

Navigation