Skip to main content
Log in

Femtosecond fiber laser based methane optical clock

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An optical clock based on an Er3+ fiber femtosecond laser and a two-mode He–Ne/CH4 optical frequency standard (λ=3.39 μm) is realized. Difference-frequency generation is used to down convert the 1.5-μm frequency comb of the Er3+ femtosecond laser to the 3.4-μm range. The generated infrared comb overlaps with the He–Ne/CH4 laser wavelength and does not depend on the carrier–envelope offset frequency of the 1.5-μm comb. In this way a direct phase-coherent connection between the optical frequency of the He–Ne/CH4 standard and the radio frequency pulse repetition rate of the fiber laser is established. The stability of the optical clock is measured against a commercial hydrogen maser. The measured relative instability is 1×10−12 at 1 s and for averaging times less than 50 s it is determined by the microwave standard, while for longer times a drift of the He–Ne/CH4 optical standard is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Audoin, B. Guinot, The Measurement of Time: Time, Frequency and the Atomic Clock (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  2. I. Ryuichi, I. Atsutoshi, T. Hiroshi, K. Hiromitsu, K. Moritaka, N. Junichi, K. Yasuhiro, K. Tetsuro, M. Morito, K. Shinobu, K. Kensuke, M. Shigeru, in Measuring the Future, Proc. Fifth IVS General Meet., ed. by A. Finkelstein, D. Behrend (Nauka, St. Petersburg, 2008), pp. 400–401

    Google Scholar 

  3. D. Chambon, S. Bize, M. Lours, A. Clairon, G. Santarelli, A. Luiten, M. Tobar, Rev. Sci. Instrum. 76, 094704 (2005)

    Article  ADS  Google Scholar 

  4. S. Chang, A.G. Mann, A.N. Luiten, Electron. Lett. 36, 480 (2000)

    Article  Google Scholar 

  5. A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Opt. Lett. 32, 641 (2007)

    Article  ADS  Google Scholar 

  6. M.A. Gubin, A.S. Shelkovnikov, E.V. Kovalchuk, D.D. Krylova, E.A. Petrukhin, D.A. Tyurikov, in Proc. 1999 Joint Meet. EFTF/IEEE IFCS, Besancon, France, 13–16 April 1999, p. 710

  7. J. Ye, H. Schnatz, L.W. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1041 (2003)

    Article  Google Scholar 

  8. J. Ye, S.T. Cundiff, Femtosecond Optical Frequency Comb Technology: Principle, Operation and Application (Springer, New York, 2005)

    Book  Google Scholar 

  9. T. Udem, R. Holzwarth, T.W. Hänsch, Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  10. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  11. J. Ranka, R. Windeler, A. Stentz, Opt. Lett. 25, 25 (2000)

    Article  ADS  Google Scholar 

  12. L. Matos, D. Kleppner, O. Kuzucu, T.R. Schibili, J. Kim, E.P. Ippen, F. Kaertner, Opt. Lett. 29, 1683 (2004)

    Article  ADS  Google Scholar 

  13. M. Zimmerman, C. Gohle, R. Holzwarth, T. Udem, T.W. Hänsch, Opt. Lett. 29, 310 (2004)

    Article  ADS  Google Scholar 

  14. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, C. Chardonnet, Appl. Phys. B 78, 25 (2004)

    Article  ADS  Google Scholar 

  15. S. Foreman, A. Marian, J. Ye, E. Petrukhin, M. Gubin, O. Mücke, F. Wong, E. Ippen, F. Kaertner, Opt. Lett. 30, 570 (2005)

    Article  ADS  Google Scholar 

  16. J. Rauschenberger, T.M. Fortier, D.J. Jones, J. Ye, S.T. Cundiff, Opt. Express 10, 1404 (2002)

    ADS  Google Scholar 

  17. F. Tauser, A. Leitenstorfer, W. Zinth, Opt. Express 11, 594 (2003)

    Article  ADS  Google Scholar 

  18. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, F. Tauser, Opt. Express 12, 5872 (2004)

    Article  ADS  Google Scholar 

  19. T.R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, M.E. Fermann, Opt. Lett. 29, 2467 (2004)

    Article  ADS  Google Scholar 

  20. J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, J.W. Nicholson, Appl. Phys. B 86, 49 (2007)

    Article  ADS  Google Scholar 

  21. J.J. McFerran, W.C. Swann, B.R. Washburn, N.R. Newbury, Appl. Phys. B 86, 219 (2007)

    Article  ADS  Google Scholar 

  22. A.V. Tausenev, P.G. Kryukov, Quantum Electron. 34, 106 (2004)

    Article  ADS  Google Scholar 

  23. A.V. Tausenev, P.G. Kryukov, M.M. Bubnov, M.E. Likhachev, E.Yu. Romanova, M.V. Yashkov, V.F. Khopin, M.Yu. Salgansky, Quantum Electron. 35, 581 (2005)

    Article  ADS  Google Scholar 

  24. M.A. Gubin, E.D. Protsenko, Quantum Electron. 27, 1048 (1997)

    Article  ADS  Google Scholar 

  25. S.T. Dawkins, J.J. McFerran, A.N. Luiten, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 918 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubin, M.A., Kireev, A.N., Konyashchenko, A.V. et al. Femtosecond fiber laser based methane optical clock. Appl. Phys. B 95, 661–666 (2009). https://doi.org/10.1007/s00340-009-3525-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3525-9

PACS

Navigation