Skip to main content
Log in

Gain characteristics of 980 nm-pumped Er3+–Tm3+–Pr3+-co-doped fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a numerical model of Er3+–Tm3+–Pr3+-co-doped fiber amplifier pumped with 980 nm laser for the first time, to the best of our knowledge. The rate and power propagation equations are solved numerically to analyze the effects of the pump power and active ion concentrations on the gains at 1310, 1470, 1530, 1600, 1650 nm windows. The results show that with pump power of 200 mW and when Pr3+, Tm3+, Er3+ concentrations are around 2.0×1024, 3.0×1024, 1.5×1024 (ions/m3), respectively, the signals at 1470, 1530, 1600 nm may be nearly equally amplified with gain of 11–12.0 dB in the active fiber with length of 11.0 m, and the signals at 1310, 1470 and 1600 nm windows may be nearly equally amplified with gain of 12.0 dB in the active gain medium with length of 15.0 m. With pump power of 300 mW, the signals at 1470, 1530, 1600 nm may be nearly equally amplified with a gain of 16.0 dB in the active medium with a length of 15.0 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Naito, T. Tanaka, K. Torii, A broadband distributed Raman amplifier for bandwidth beyond 100 nm. OFC2002, TuR, P116-117

  2. C. Jiang, W. Hu, Multiband-fiber Raman amplifier, in 9th Opto-Electronics and Communications Conference & 3rd International Conference on Optical Internet, July 12–16, 2004, Pacifica Yokohama, Japan

  3. C.R. Giles, E. Desuvire, Modeling erbium-doped fiber amplifiers. J. Lightw. Technol. 9(2), 271–283 (1991)

    Article  ADS  Google Scholar 

  4. C.-H. Yeh, C.-C. Lee, S. Chi, 120-nm bandwidth erbium-doped fiber amplifier in parallel configuration. IEEE Photonics Technol. Lett. 16(7), 1637 (2004)

    Article  ADS  Google Scholar 

  5. Y.B. Lu, P.L. Chu, A. Alphones, P. Shum, A 105-nm ultrawide-band gain-flattened amplifier combining C- and L-band dual-core EDFAS in a parallel configuration. IEEE Photonics Technol. Lett. 16(7), 1640 (2004)

    Article  ADS  Google Scholar 

  6. E.R.M. Taylor, L.N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, B. Sordo, Thulium-doped telluride fiber amplifier. IEEE Photonics Technol. Lett. 16(3), 777 (2004)

    Article  ADS  Google Scholar 

  7. R.M. Percival, J.R. Williams, Highly efficient 1.064 μm up-conversion pumped 1.47 μm thulium doped fluoride fiber amplifier. Electron. Lett. 30(20), 1684–1685 (1994)

    Article  Google Scholar 

  8. T. Kasamatsu, Y. Yano, T. Ono, 1.49-um-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems. J. Lightw. Technol. 20(10), 1826–1837 (2002)

    Article  ADS  Google Scholar 

  9. Y. Ohishi, T. Kanamori, T. Nishi, S. Takahashi, E. Snitzer, Concentration effect on gain of Pr3+-doped fluoride fiber amplifier for 1.3 μm. IEEE Photonics Technol. Lett. 4(12), 1338–1340 (1992)

    Article  ADS  Google Scholar 

  10. L. Huang, A. Jha, S. Shen, X. Liu, Broadband emission in Er3+–Tm3+ codoped tellurite fibre. Opt. Express 12(11), 2429 (2004)

    Article  ADS  Google Scholar 

  11. H. Jeong, K. Oh, S.R. Han, T.F. Morse, Characterization of broadband amplified spontaneous emission from a Er3+–Tm3+ co-doped silica fiber. Chem. Phys. Lett. 367, 507 (2003)

    Article  ADS  Google Scholar 

  12. D.C. Yeh, R.R. Petrin, W.A. Sibley, V. Madigou, J.L. Adam, M.J. Suscavage, Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass. Phys. Rev. B 39, 80 (1989)

    Article  ADS  Google Scholar 

  13. S. Tanabe, K. Suzuki, N. Soga, T. Hanada, Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-conversion in co-doped glasses by red-laser pumping. J. Lumin. 65, 247 (1995)

    Article  Google Scholar 

  14. X. Zou, A. Shikida, H. Yanagita, H. Toratani, Mechanisms of up-conversion fluorescences in Er3+, Tm3+ codoped fluorozircoaluminate glasses. J. Non-Cryst. Solids 181, 100 (1995)

    Article  ADS  Google Scholar 

  15. W. Lozano, B. Cid, B. de Araujo, Y. Messaddeq, Enhanced frequency upconversion in Er3+ doped fluoridate glass due to energy transfer from Tm3+. J. Non-Cryst. Solids 311, 318 (2002)

    Article  ADS  Google Scholar 

  16. F. Di Pasquale, M. Federighi, Improved gain characteristics in high concentration Er3+/Yb3+ codoped glass waveguide amplifiers. IEEE J. Quantum Electron. 30(9), 2127–2131 (1994)

    Article  ADS  Google Scholar 

  17. M. Karasek, Optimum design of Er3+–Yb3+ codoped fibers for large-signal high-pump-power applications. IEEE J. Quantum Electron. 33, 1699–1705 (1997)

    Article  ADS  Google Scholar 

  18. E. Yahel, A.A. Hendy, Modeling and optimization of short Er3+–Yb3+ co-doped fiber lasers. IEEE J. Quantum Electron. 39(11), 1444–1451 (2003)

    Article  ADS  Google Scholar 

  19. F.X. Gan, Optical and Spectroscopic Properties of Glasses. (Shanghai Sci. Technol., Shanghai, 1992), p. 245

    Google Scholar 

  20. S. Shen, A. Jha, X. Liu, M. Nataly, Tellurite glasses for broadband amplifiers and integrated optics. J. Am. Ceram. Soc. 85(6), 1391–1395 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, C., Jin, L. Gain characteristics of 980 nm-pumped Er3+–Tm3+–Pr3+-co-doped fiber. Appl. Phys. B 95, 703–709 (2009). https://doi.org/10.1007/s00340-009-3499-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3499-7

PACS

Navigation