Skip to main content
Log in

Generalized multiple-prism dispersion theory for laser pulse compression: higher order phase derivatives

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An exact, and explicit, expression for the second derivative of the generalized multiple-prism angular dispersion is provided. This corresponds to the third derivative of the generalized exit angle with respect to the refractive index ( 3 n φ 2,m ). Higher derivatives, in abstract notation, are also given. The generalized equations are presented in a format applicable to practical prismatic configurations utilized in laser pulse compression schemes in the femtosecond domain. Exact values, as a function of the refractive index, are given for the first, second, and third angular derivatives for compensating double-prism and four-prism configurations of practical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Newton, Opticks (Royal Society, London, 1704)

    Google Scholar 

  2. F.J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003)

    Google Scholar 

  3. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edn. (Academic Press, New York, 2006)

    Google Scholar 

  4. W. Dietel, J.J. Fontaine, J.-C. Diels, Opt. Lett. 8, 4 (1983)

    Article  ADS  Google Scholar 

  5. R.L. Fork, O.E. Martinez, J.P. Gordon, Opt. Lett. 9, 150 (1984)

    Article  ADS  Google Scholar 

  6. F.J. Duarte, J.A. Piper, Opt. Commun. 43, 303 (1982)

    Article  ADS  Google Scholar 

  7. F.J. Duarte, J.A. Piper, Am. J. Phys. 51, 1132 (1983)

    Article  ADS  Google Scholar 

  8. F.J. Duarte, Opt. Quantum Electron. 19, 223 (1987)

    Article  Google Scholar 

  9. F.J. Duarte, Opt. Quantum Electron. 22, 467 (1990)

    Article  Google Scholar 

  10. J.-C. Diels, W. Dietel, J.J. Fontaine, W. Rudolph, B. Wilhelmi, J. Opt. Soc. Am. B 2, 680 (1985)

    Article  ADS  Google Scholar 

  11. L.Y. Pang, J.G. Fujimoto, E.S. Kintzer, Opt. Lett. 17, 1599 (1992)

    Article  ADS  Google Scholar 

  12. K. Osvay, A.P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, M. Csatári, IEEE J. Sel. Top. Quantum Electron. 10, 213 (2004)

    Article  Google Scholar 

  13. K. Osvay, A.P. Kovács, G. Kurdi, Z. Heiner, M. Divall, J. Klebniczki, I. Ferincz, Opt. Commun. 248, 201 (2005)

    Article  ADS  Google Scholar 

  14. L. Arissian, J.-C. Diels, Phys. Rev. A 75, 013814 (2007)

    Article  ADS  Google Scholar 

  15. B. Proctor, F. Wise, Opt. Lett. 15, 1295 (1992)

    Article  ADS  Google Scholar 

  16. R.E. Sherriff, J. Opt. Soc. B 15, 1224 (1998)

    Article  ADS  Google Scholar 

  17. K. Osvay, P. Bombi, A.P. Kovács, Z. Bor, Appl. Phys. B 75, 649 (2002)

    Article  ADS  Google Scholar 

  18. F.J. Duarte, Appl. Opt. 28, 5201 (1989)

    Article  ADS  Google Scholar 

  19. F.J. Duarte, Opt. Commun. 103, 8 (1993)

    Article  ADS  Google Scholar 

  20. D.W. Hughes, J.R.M. Barr, J. Phys. D: Appl. Phys. 25, 563 (1992)

    Article  ADS  Google Scholar 

  21. B.A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, U. Keller, Rev. Sci. Instrum. 70, 2758 (1999)

    Article  ADS  Google Scholar 

  22. U. Siegner, M. Achermann, U. Keller, Meas. Sci. Technol. 12, 1847 (2001)

    Article  ADS  Google Scholar 

  23. G.Y. Sirat, K. Wilner, G. Neuhauser, Opt. Express 13, 6310 (2005)

    Article  ADS  Google Scholar 

  24. F.J. Duarte, J.A. Piper, Opt. Commun. 35, 100 (1980)

    Article  ADS  Google Scholar 

  25. F.J. Duarte, J.A. Piper, Appl. Opt. 23, 1391 (1984)

    Article  ADS  Google Scholar 

  26. F.J. Duarte, J.A. Piper, Opt. Acta 31, 331 (1984)

    Google Scholar 

  27. W. Demtröder, Laserspektroskopie: Grundlagen und Techniken (Springer, Berlin, 2007)

    Google Scholar 

  28. R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank, Opt. Lett. 12, 483 (1987)

    Article  ADS  Google Scholar 

  29. F.J. Duarte, in Tunable Laser Applications, 2nd edn., ed. by F.J. Duarte (CRC Press, New York, 2009), Chap. 13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, F.J. Generalized multiple-prism dispersion theory for laser pulse compression: higher order phase derivatives. Appl. Phys. B 96, 809–814 (2009). https://doi.org/10.1007/s00340-009-3475-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3475-2

PACS

Navigation