Skip to main content
Log in

Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the development of Incoherent Broadband Cavity Enhanced Absorption Spectroscopy (IBBCEAS) using a blue light emitting diode (LED) for the detection of NO2 in laboratory ambient air. Absorption of the oxygen collisional pair in the atmosphere was also detected in the same spectral range. The mirror reflectivity was determined using a standard gas sample mixture of NO2, and calibrated with the help of the absorption spectrum of the oxygen collisional pair in pure oxygen at atmospheric pressure. Optimization of the experimental parameters was investigated and is discussed in detail. For the first time in IBBCEAS involving broadband absorption spectra, averaging time for signal-to-noise ratio enhancement has been optimized using Allan variance plot. 18.1 ppbv NO2 in laboratory ambient air has been retrieved from the absorption spectra using differential fitting method over a 40 nm spectral region centered at 470 nm. A minimum detection sensitivity of about 2.2 ppbv (1σ) for NO2 at atmospheric pressure has been achieved using the optimal averaging time of 100 s by means of a high finesse optical cavity formed with two moderate reflectivity (∼99.55%) mirrors. No purging of the cavity mirrors by high purity He or N2 gas streams was necessary to prevent contamination of the mirror faces for the in situ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Wayne, Chemistry of Atmospheres (Oxford University Press, Oxford, 2000)

    Google Scholar 

  2. T.B. Ryerson, E.J. Williams, F.C. Fehsenfeld, J. Geophys. Res. 105, 26447 (2000)

    Article  ADS  Google Scholar 

  3. J.A. Thornton, P.J. Wooldridge, R.C. Cohen, Anal. Chem. 72, 528 (2000)

    Article  Google Scholar 

  4. J. Matsumoto, J. Hirokawa, H. Akimoto, Y. Kajii, Atmos. Environ. 35, 2803 (2001)

    Article  Google Scholar 

  5. Y. Matsumi, S. Murakami, M. Kono, K. Takahashi, M. Koike, Y. Kondo, Anal. Chem. 73, 5485 (2001)

    Article  Google Scholar 

  6. J.W. Harder, E.J. Williams, K. Baumann, F.C. Fehsenfeld, J. Geophys. Res. 102, 6227 (1997)

    Article  ADS  Google Scholar 

  7. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  8. R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69, 3763 (1998)

    Article  ADS  Google Scholar 

  9. A. O’Keefe, Chem. Phys. Lett. 293, 331 (1998)

    Article  ADS  Google Scholar 

  10. J.B. Paul, L. Lapson, J.G. Anderson, Appl. Opt. 40, 4904 (2001)

    Article  ADS  Google Scholar 

  11. D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)

    Article  ADS  Google Scholar 

  12. R. Wada, A.J. Orr-Ewing, Analyst 12, 1595 (2005)

    Article  ADS  Google Scholar 

  13. H.D. Osthoff, S.S. Brown, T.B. Ryerson, T.J. Fortin, B.M. Lerner, E.J. Williams, A. Pettersson, T. Baynard, W.P. Dubé, S.J. Ciciora, A.R. Ravishankara, J. Geophys. Res. D 111, 12305 (2006)

    Article  ADS  Google Scholar 

  14. V.L. Kasyutich, P.A. Martin, R.J. Holdsworth, Meas. Sci. Technol. 17, 923 (2006)

    Article  ADS  Google Scholar 

  15. P.L. Kebabian, S.C. Herndon, A. Freedman, Anal. Chem. 77, 724 (2005)

    Article  Google Scholar 

  16. J.M. Langridge, S.M. Ball, R.L. Jones, Analyst 131, 916 (2006)

    Article  ADS  Google Scholar 

  17. S.E. Fiedler, A. Hese, A.A. Ruth, Chem. Phys. Lett. 371, 284 (2003)

    Article  ADS  Google Scholar 

  18. S.E. Fiedler, A. Hese, Rev. Sci. Instrum. 76, 023107 (2005)

    Article  ADS  Google Scholar 

  19. D.S. Venables, T. Gherman, J. Orphal, J.C. Wenger, A.A. Ruth, Environ. Sci. Technol. 40, 6758 (2006)

    Article  Google Scholar 

  20. S.M. Ball, J.M. Langridge, R.L. Jones, Chem. Phys. Lett. 398, 68 (2004)

    Article  ADS  Google Scholar 

  21. T. Gherman, D.S. Venables, S. Vaughan, J. Orphal, A.A. Ruth, Environ. Sci. Technol. 42, 890 (2008)

    Article  Google Scholar 

  22. M. Triki, P. Cermak, G. Méjean, D. Romanini, Appl. Phys. B 91, 195 (2008)

    Article  ADS  Google Scholar 

  23. C. Kern, S. Trick, B. Rippel, U. Platt, Appl. Opt. 45, 2077 (2006)

    Article  ADS  Google Scholar 

  24. S.E. Fiedler, A. Hese, U. Heitmann, Rev. Sci. Instrum. 78, 073104 (2007)

    Article  ADS  Google Scholar 

  25. P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

  26. P. Weibring, D. Richter, A. Fried, J.G. Walega, C. Dyroff, Appl. Phys. B 85, 207 (2006)

    Article  ADS  Google Scholar 

  27. T. Berg, S. Cherednichenko, V. Drakinskiy, P. Khosropanah, H. Merkel, E. Kollberg, J.W. Kooi, Proc. SPIE 5498, 605 (2004)

    Article  ADS  Google Scholar 

  28. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Opt. Express 16, 10178 (2008)

    Article  ADS  Google Scholar 

  29. J.P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, J. Quantum Spectrosc. Radiat. Transf. 60, 1025 (1998)

    Article  ADS  Google Scholar 

  30. G.D. Greenblatt, J.J. Orlando, J.B. Burkholder, A.R. Ravishankara, J. Geophys. Res. 95, 18577 (1990)

    Article  ADS  Google Scholar 

  31. M. Mazurenka, R. Wada, A.J.L. Shillings, T.J.A. Butler, J.M. Beames, A.J. Orr-Ewing, Appl. Phys. B 81, 135 (2005)

    Article  ADS  Google Scholar 

  32. J.P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, J. Orphal, J. Quantum Spectrosc. Radiat. Transf. 61, 509 (1999)

    Article  ADS  Google Scholar 

  33. R.J. Yokelson, J.B. Burkholder, R.W. Fox, R.K. Talukdar, A.R. Ravishankara, J. Phys. Chem. 98, 13144 (1994)

    Article  Google Scholar 

  34. L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quantum Spectrosc. Radiat. Transf. 82, 5 (2003)

    Article  ADS  Google Scholar 

  35. S.M. Ball, R.L. Jones, Chem. Rev. 103, 5239 (2003)

    Article  Google Scholar 

  36. T. Wagner, C. von Friedeburg, M. Wenig, C. Otten, U. Platt, J. Geophys. Res. 107, 4424 (2002)

    Article  Google Scholar 

  37. F. Wittrock, H. Oetjen, A. Richter, S. Fietkau, T. Medeke, A. Rozanov, J.P. Burrows, Atmos. Chem. Phys. 4, 955 (2004)

    Article  Google Scholar 

  38. U. Friess, P.S. Monks, J.J. Remedios, A. Rozanov, R. Sinreich, T. Wagner, U. Platt, J. Geophys. Res. 111, D14203 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Zhao, W., Chen, W. et al. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode. Appl. Phys. B 94, 85–94 (2009). https://doi.org/10.1007/s00340-008-3308-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3308-8

PACS

Navigation