Skip to main content
Log in

Relaxation dynamics of space-charge gratings excited by nanosecond light pulses in highly iron-doped LiNbO3 crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Transmission gratings are recorded with nanosecond light pulses in highly Fe-doped (0.5 to 3 wt%) as-grown and oxidized lithium niobate crystals. In as-grown samples, the diffraction efficiency decays exponentially after recording, and an exponential increase of the decay rate with decreasing mean distance between the Fe centers takes place. Such a behavior is typical for tunneling of electrons between Fe centers. A different and highly peculiar dark evolution of the gratings, which includes a strong transient increase of the diffraction efficiency during about 100 s after illumination, is observed in strongly oxidized crystals. This behavior is explained within a simple relaxation model which accounts for the pyroelectric effect. The long-time decay of the diffraction efficiency again follows an exponential law. In strongly oxidized crystals, the decay rate shows, however, a surprising decrease with decreasing mean distance between the Fe centers. This peculiarity is shown to be consistent with the present notion of hopping charge transport in highly doped strongly compensated semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Solymar, D.J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996)

    Google Scholar 

  2. P. Günter, J.P. Huignard (eds.), Springer Series in Optical Sciences. Photorefractive Materials and Their Applications, vol. 1–3 (Springer, Berlin, 2005–2007)

    Google Scholar 

  3. K. Buse, Appl. Phys. B 64, 273 (1997)

    Article  ADS  Google Scholar 

  4. O. Beyer, C. von Korff Schmising, M. Luennemann, K. Buse, B. Sturman, Opt. Express 14, 1533 (2006)

    Article  ADS  Google Scholar 

  5. B. Welz, M. Sperling, Atomic Absorption Spectrometry (Wiley-VCH, New York, 1998)

    Book  Google Scholar 

  6. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber, Appl. Phys. 12, 355 (1977)

    Article  ADS  Google Scholar 

  7. M. Falk, K. Buse, Appl. Phys. B 81, 853 (2005)

    Article  ADS  Google Scholar 

  8. I. Nee, M. Müller, K. Buse, E. Krätzig, J. Appl. Phys. 88, 4282 (2000)

    Article  ADS  Google Scholar 

  9. K. Peithmann, K. Buse, E. Krätzig, Appl. Phys. B 74, 549 (2002)

    Article  ADS  Google Scholar 

  10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969)

    Google Scholar 

  11. A.M. Prokhorov, Y.S. Kuz’miniv, Physics and Chemistry of Crystalline Lithium Niobate. The Adam Hilger Series on Optics and Optoelectronics (Taylor & Francis, New York, 1990)

    Google Scholar 

  12. R.E. Newnham, Properties of Materials (Oxford University Press, London, 2005)

    Google Scholar 

  13. H.J. Eichler, P. Günter, D.W. Pohl, Laser-Induced Dynamic Gratings (Springer, New York, 1986)

    Google Scholar 

  14. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)

    Google Scholar 

  15. S. Gronenborn, B. Sturman, M. Falk, D. Haertle, K. Buse, Phys. Rev. Lett. 101, 116601 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Falk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Japs, J., Falk, M., Woike, T. et al. Relaxation dynamics of space-charge gratings excited by nanosecond light pulses in highly iron-doped LiNbO3 crystals. Appl. Phys. B 95, 413–419 (2009). https://doi.org/10.1007/s00340-008-3282-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3282-1

PACS

Navigation