Skip to main content
Log in

Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have theoretically investigated the thermal characteristics of double-channel ridge–waveguide InGaAs/InAlAs/InP quantum cascade lasers (QCLs) using a two-dimensional heat dissipation model. The temperature distribution, heat flow, and thermal conductance (G th) of QCLs were obtained through the thermal simulation. A thick electroplated Au around the laser ridges helps to improve the heat dissipation from devices, being good enough to substitute the buried heterostructure (BH) by InP regrowth for epilayer-up bonded lasers. The effects of the device geometry (i.e., ridge width and cavity length) on the G th of QCLs were investigated. With 5 μm thick electroplated Au, the G th is increased with the decrease of ridge width, indicating an improvement from G th=177 W/K⋅cm2 at W=40 μm to G th=301 W/K⋅cm2 at W=9 μm for 2 mm long lasers. For the 9 μm×2 mm epilayer-down bonded laser with 5 μm thick electroplated Au, the use of InP contact layer leads to a further improvement of 13% in G th, and it was totally raised by 45% corresponding to 436 W/K⋅cm2 compared to the epilayer-up bonded laser with InGaAs contact layer. It is found that the epilayer-down bonded 9 μm wide BH laser with InP contact layer leads to the highest G th=449 W/K⋅cm2. The theoretical results were also compared with available obtained experimentally data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, H.C. Liu, IEEE J. Sel. Top. Quantum Electron. 6, 931 (2000)

    Article  Google Scholar 

  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002)

    Article  ADS  Google Scholar 

  3. M. Beck, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, IEEE Photon. Technol. Lett. 12, 1450 (2000)

    Article  Google Scholar 

  4. J.S. Yu, S. Slivken, A. Evans, J. David, M. Razeghi, Appl. Phys. Lett. 82, 3397 (2003)

    Article  ADS  Google Scholar 

  5. C. Gmachl, A.M. Sergent, A. Tredicucci, F. Capasso, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, S.N.G. Chu, A.Y. Cho, IEEE Photon. Technol. Lett. 11, 1369 (1999)

    Article  Google Scholar 

  6. J.S. Yu, S. Slivken, A. Evans, S.R. Darvish, J. Nguyen, M. Razeghi, Appl. Phys. Lett. 88, 091113 (2006)

    Article  ADS  Google Scholar 

  7. A. Evans, J. Nguyen, S. Slivken, J.S. Yu, S.R. Darvish, M. Razeghi, Appl. Phys. Lett. 88, 051105 (2006)

    Article  ADS  Google Scholar 

  8. C.A. Evans, V.D. Jovanović, D. Indjin, Z. Ikonić, P. Harrison, IEEE J. Quantum Electron. 42, 859 (2006)

    Article  ADS  Google Scholar 

  9. A. Lops, V. Spagnolo, G. Scamarcio, J. Appl. Phys. 100, 043109 (2006)

    Article  ADS  Google Scholar 

  10. C. Zhu, Y. Zhang, A. Li, Z. Tian, J. Appl. Phys. 100, 053105 (2006)

    Article  ADS  Google Scholar 

  11. G. Chen, Phys. Rev. B 57, 14958 (1998)

    Article  ADS  Google Scholar 

  12. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  13. V. Spagnolo, M. Troccoli, G. Scamarcio, C. Gmachl, F. Capasso, A. Tredicucci, A.M. Sergent, A.L. Hutchinson, D.L. Sivco, A.Y. Cho, Appl. Phys. Lett. 78, 2095 (2001)

    Article  ADS  Google Scholar 

  14. S. Slivken, J.S. Yu, A. Evans, J. David, L. Doris, M. Razeghi, IEEE Photon. Technol. Lett. 16, 744 (2004)

    Article  Google Scholar 

  15. J.S. Yu, A. Evans, J. David, L. Doris, S. Slivken, M. Razeghi, Appl. Phys. Lett. 83, 5136 (2003)

    Article  ADS  Google Scholar 

  16. J.S. Yu, A. Evans, J. David, L. Doris, S. Sliveken, M. Razeghi, IEEE Photon. Technol. Lett. 16, 747 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.K., Chung, K.S. & Yu, J.S. Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation. Appl. Phys. B 93, 779–786 (2008). https://doi.org/10.1007/s00340-008-3265-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3265-2

PACS

Navigation