Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers

Abstract

The second order nonlinear refractive index n 2 of various multicomponent glasses was measured at the wavelength of 1240 nm close to the 1.3-μm fiber transmission window. With the refractive index covering the range from 1.45 to 2.3, a comparatively broad range of n 2 with values from 1.1×10−20 m2/W for boro-silicate based glass NC21 to 4.3×10−19 m2/W for lead–bismuth-gallate based glass PBG08 was measured using the Z-scan method. Considering the broad infrared transmission range of multicomponent glasses, these materials pose a great potential for future applications as photonic crystal fiber sources of infrared supercontinuum.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, Opt. Lett. 21, 1547 (1996)

    Article  ADS  Google Scholar 

  2. 2.

    J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)

    Article  ADS  Google Scholar 

  3. 3.

    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  4. 4.

    G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001)

    Google Scholar 

  5. 5.

    T. Monro, Y. West, D. Hewak, B.N. Richardson, Electron. Lett. 36, 1998 (2000)

    Article  Google Scholar 

  6. 6.

    V.V.R. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, A. Taylor, Opt. Express 10, 1520 (2002)

    ADS  Google Scholar 

  7. 7.

    J.H.V. Price, T.M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J.Y.Y. Leong, P. Petropoulos, J.C. Flanagan, G. Brambilla, X. Feng, D.J. Richardson, Proc. SPIE 6102, 61020A 2006)

    Article  Google Scholar 

  8. 8.

    V.I. Kalashnikov, E. Sorokin, I.T. Sorokina, Appl. Phys. B 87, 37 (2007)

    Article  ADS  Google Scholar 

  9. 9.

    P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wnag, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto, Opt. Express 16, 7161 (2008)

    Article  ADS  Google Scholar 

  10. 10.

    M.J. Weber, D. Milam, W.L. Smith, Opt. Eng. 17, 463 (1978)

    Google Scholar 

  11. 11.

    M.J. Moran, C.Y. She, R.L. Carman, IEEE J. Quantum Electron. 11, 259 (1975)

    Article  ADS  Google Scholar 

  12. 12.

    R. Adair, L.L. Chase, S.A. Payne, J. Opt. Soc. Am. B 4, 875 (1987)

    Article  ADS  Google Scholar 

  13. 13.

    A. Owyoung, IEEE J. Quantum Electron. 9, 1064 (1973)

    Article  ADS  Google Scholar 

  14. 14.

    W.E. Williams, M.J. Soileau, E.W. Van Stryland, Opt. Commun. 50, 256 (1984)

    Article  ADS  Google Scholar 

  15. 15.

    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955 (1989)

    Article  ADS  Google Scholar 

  16. 16.

    A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, E.W. Van Stryland, J. Opt. Soc. Am. B 9, 405 (1992)

    Article  ADS  Google Scholar 

  17. 17.

    K. Lee, W. Cho, J. Park, J. Kim, S. Park, U. Kim, Opt. Lett. 19, 1116 (1994)

    Article  ADS  Google Scholar 

  18. 18.

    J. Wang, M. Sheik-Bahae, A.A. Said, D.J. Hagan, E.W. Van Stryland, J. Opt. Soc. Am. B 11, 1009 (1994)

    Article  ADS  Google Scholar 

  19. 19.

    K.Y. Tseng, K.S. Wong, G.K.L. Wong, Opt. Lett. 21, 180 (1996)

    Article  ADS  Google Scholar 

  20. 20.

    R. DeSalvo, A.A. Said, D.J. Hagan, E.W. Van Stryland, M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996)

    Article  ADS  Google Scholar 

  21. 21.

    J.M. Harris, N.J. Dovichi, Anal. Chem. 52, 695 (1980)

    Article  Google Scholar 

  22. 22.

    M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  23. 23.

    H.P. Li, C.H. Kam, Y.L. Lam, F. Zhou, W. Ji, Appl. Phys. B 70, 385 (2000)

    Article  ADS  Google Scholar 

  24. 24.

    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991)

    Article  ADS  Google Scholar 

  25. 25.

    M. Sheik-Bahae, D.J. Hagan, E.W. Van Stryland, Phys. Rev. Lett. 65, 96 (1990)

    Article  ADS  Google Scholar 

  26. 26.

    N.L. Boling, A.J. Glass, A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978)

    Article  ADS  Google Scholar 

  27. 27.

    M.J. Weber, Handbook of Optical Materials (CRC, Boca Raton, 2003)

    Google Scholar 

  28. 28.

    D. Milam, M.J. Weber, J. Appl. Phys. 47, 2497 (1976)

    Article  ADS  Google Scholar 

  29. 29.

    A.V. Mitrofanov, Y.M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A.A. Ivanov, M.V. Alfimov, A.B. Fedotov, A.M. Zheltikov, Opt. Express 14, 10645 2006)

    Article  ADS  Google Scholar 

  30. 30.

    D. Lorenc, I. Bugar, M. Aranyosiova, R. Buczynski, D. Velic, D. Chorvat, Laser Phys. 18, 270 (2008)

    ADS  Google Scholar 

  31. 31.

    ZEMAX Glass Catalog. ZEMAX Development Corporation, Bellevue, WA, 1990–2000

  32. 32.

    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  33. 33.

    S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Lorenc.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lorenc, D., Aranyosiova, M., Buczynski, R. et al. Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers. Appl. Phys. B 93, 531 (2008). https://doi.org/10.1007/s00340-008-3217-x

Download citation

PACS

  • 42.65.Jx
  • 42.70.Ce