Skip to main content
Log in

Interference-induced enhancement of intensity and energy of a quantum optical field by a subwavelength array of coherent light sources

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Recently, we have shown a mechanism that could provide great resonant and nonresonant transmission enhancements of the classical (nonquantum) light waves passed through subwavelength aperture arrays in thin metal films not by the plasmon–polariton waves, but by the constructive interference of diffracted waves (beams generated by the apertures) at the detector placed in the far-field zone. We now present a quantum reformulation of the model. The Hamiltonian describing the phenomenon of interference-induced enhancement and suppression of both the intensity and energy of a quantum optical field is derived. The basic properties of the field energy determining by the Hamiltonian are analyzed. Normally, the interference (addition) of two or more waves causes enhancement or suppression of the light intensity, but not the light energy. The model shows that the phenomenon could be observed experimentally, for instance, by using a subwavelength array of the coherent quantum light-sources (one- and two-dimensional subwavelength apertures, fibers, dipoles, and atoms).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Ebbesen, W.C. Tan, N.P. Wanstall, T.W. Preist, J.R. Sambles, Nature (London) 391, 667 (1998)

    Article  ADS  Google Scholar 

  2. U. Schröter, D. Heitmann, Phys. Rev. B 58, 15419 (1998)

    Article  ADS  Google Scholar 

  3. M.B. Sobnack, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Phys. Rev. Lett. 80, 5667 (1998)

    Article  ADS  Google Scholar 

  4. J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Phys. Rev. Lett. 83, 2845 (1999)

    Article  ADS  Google Scholar 

  5. S. Astilean, P. Lalanne, M. Palamaru, Opt. Commun. 175, 265 (2000)

    Article  ADS  Google Scholar 

  6. Y. Takakura, Phys. Rev. Lett. 86, 5601 (2001)

    Article  ADS  Google Scholar 

  7. M.M.J. Treacy, Phys. Rev. B 66, 195105 (2002)

    Article  ADS  Google Scholar 

  8. Q. Cao, P. Lalanne, Phys. Rev. Lett. 88, 057403 (2002)

    Article  ADS  Google Scholar 

  9. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature (London) 424, 824 (2003)

    Article  ADS  Google Scholar 

  10. P. Lalanne, C. Sauvan, J.P. Hugonin, J.C. Rodier, P. Chavel, Phys. Rev. B 68, 125404 (2003)

    Article  ADS  Google Scholar 

  11. A. Barbara, P. Quémerais, E. Bustarret, T. López-Rios, T. Fournier, Eur. Phys. J. D 23, 143 (2003)

    Article  ADS  Google Scholar 

  12. M. Sarrazin, J.P. Vigneron, J.M. Vigoureux, Phys. Rev. B 67, 085415 (2003)

    Article  ADS  Google Scholar 

  13. S.V. Kukhlevsky, M. Mechler, L. Csapó, K. Janssens, O. Samek, Phys. Rev. B 70, 195428 (2004)

    Article  ADS  Google Scholar 

  14. H.J. Lezec, T. Thio, Opt. Express 12, 3629 (2004)

    Article  ADS  Google Scholar 

  15. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004)

    Article  ADS  Google Scholar 

  16. K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004)

    Article  ADS  Google Scholar 

  17. J.B. Pendry, Science 305, 847 (2004)

    Article  ADS  Google Scholar 

  18. E. Moreno, A.I. Fernández-Domínguez, J. Ignacio Cirac, F.J. García-Vidal, L. Martín-Moreno, Phys. Rev. Lett. 95, 170406 (2005)

    Article  ADS  Google Scholar 

  19. A.E. Miroshnichenko, Y.S. Kivshar, Phys. Rev. E 72, 056611 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Gomez-Medina, M. Laroche, J.J. Saenz, Opt. Express 14, 3730–3737 (2006)

    Article  ADS  Google Scholar 

  21. E. Moreno, L. Martin-Moreno, F.G. Garcia-Vidal, J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006)

    Article  Google Scholar 

  22. B. Ung, Y. Sheng, Opt. Express 15, 1182 (2006)

    Article  ADS  Google Scholar 

  23. X.R. Huang, R.W. Peng, Z. Wang, F. Gao, S.S. Jiang, Phys. Rev. A 76, 035802 (2007)

    Article  ADS  Google Scholar 

  24. F.J. Garcia de Abajo, Rev. Mod. Phys. 79, 1267 (2007)

    Article  ADS  Google Scholar 

  25. A.K. Sarychev, V.M. Shalaev, Electrodynamics of Metamaterials (World Scientific, Singapore, 2007), p. 185

    MATH  Google Scholar 

  26. Y. Ben-Aryeh, Appl. Phys. B: Lasers Opt. 91, 157 (2008)

    Article  ADS  Google Scholar 

  27. H. Liu, P. Lalanne, Nature (London) 452, 728 (2008)

    Article  ADS  Google Scholar 

  28. S.V. Kukhlevsky, Phys. Rev. A 78, 023826 (2008)

    Article  ADS  Google Scholar 

  29. R.H. Dicke, Phys. Rev. Lett. 93, 439 (1954)

    Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Classical Theory of Fields (Nauka, Moscow, 1972)

    Google Scholar 

  31. V.B. Beresteckii, E.M. Lifshits, L.P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980)

    Google Scholar 

  32. R. Loudon, The Quantum Theory of Light (Oxford University Press, New York, 1983)

    Google Scholar 

  33. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interaction (Wiley, New York, 1992)

    Google Scholar 

  34. S. Weinberg, Theory of Quantum Fields (Cambridge University Press, London, 1995)

    Google Scholar 

  35. E.R. Pike, S. Sarkar, Quantum Theory of Radiation (Cambridge University Press, London, 1995)

    Google Scholar 

  36. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, New York, 1997)

    Google Scholar 

  37. E. Notte-Cuello, W.A. Rodrigues, math-ph/0612036 (2006)

  38. U. Leonhardt, Nature (London) 444, 823 (2006)

    Article  ADS  Google Scholar 

  39. M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 88, 067402 (2002)

    Article  ADS  Google Scholar 

  40. M. Mechler, O. Samek, S.V. Kukhlevsky, Phys. Rev. Lett. 98, 163901 (2007)

    Article  ADS  Google Scholar 

  41. N. Gauthler, Am. J. Phys. 71, 787 (2003)

    Article  ADS  Google Scholar 

  42. R. Gordon, J. Opt. A, Pure Appl. Opt. 8, L1 (2006)

    Article  Google Scholar 

  43. R.W. Schoonover, T.D. Visser, Opt. Commun. 271, 323 (2007)

    Article  ADS  Google Scholar 

  44. P.H. Souto Ribeiro, Braz. J. Phys. 31, 478 (2001)

    Article  Google Scholar 

  45. E. Altewischer, M.P. van Exter, J.P. Woerdman, Nature (London) 418, 304 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kukhlevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukhlevsky, S.V. Interference-induced enhancement of intensity and energy of a quantum optical field by a subwavelength array of coherent light sources. Appl. Phys. B 93, 145–150 (2008). https://doi.org/10.1007/s00340-008-3200-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3200-6

PACS

Navigation