Skip to main content
Log in

LSP spectral changes correlating with SERS activation and quenching for R6G on immobilized Ag nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In terms of chemical enhancement in Surface Enhanced Raman Scattering (SERS), we investigated the effect of halide and other anions to rhodamine 6G (R6G) adsorbed Ag particles that were immobilized on the substrates. The residual species on chemically prepared Ag particles such as citrate or a-carbon were thoroughly substituted by various anions, e.g., Cl, Br, I, SCN, CN, or S2O3 2− anions, whose adsorption features are elucidated by the formation constants for AgX2 (m−1)−, here X denotes the above anions. In particular, Cl, Br, or SCN ions activated SERS of R6G via intrinsic electronic interaction with Ag, whereas CN, S2O3 2−, or I anions quenched it due to their exclusive adsorption onto the Ag surfaces. We found that the activation process with the anions commonly yields a marked blue-shift of the coupled plasmon peak from ca. 650–700 to 500–550 nm in elastic scattering. It is rationalized by slight increase of the gap size between adjacent Ag nanoparticles by only ca. 1 nm based on theoretical simulations. This is probably caused by slight dissolution, oxidative etching, of the particles according to large formation constants of the complexes. Consequently, partly remaining negative charges on the Ag surface, and a slight increase in the gap size, providing huge electric field, facilitated R6G cations to adsorb on the nanoparticles, especially at the junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, J. Phys. Condens. Matter 4, 1143 (1992)

    Article  ADS  Google Scholar 

  2. M. Kerker, Surface Enhanced Raman Scattering, vol. MS10 (SPIE, Bellingham, 1990)

    Google Scholar 

  3. K. Kneipp, M. Moskovits, H. Kneipp, Surface-Enhanced Raman Scattering, Top. Appl. Phys., vol. 103 (Springer, Berlin, 2006)

    Google Scholar 

  4. J.T. Krug, G.D. Wang, S.R. Emory, S. Nie, J. Am. Chem. Soc. 121, 9208 (1999)

    Article  Google Scholar 

  5. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2957 (1999)

    Article  Google Scholar 

  6. H. Xu, J. Aizpurua, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

  7. M. Michaels, M. Nirmal, L.E. Brus, J. Phys. Chem. B 104, 11965 (2000)

    Article  Google Scholar 

  8. Y. Maruyama, M. Ishikawa, M. Futamata, Chem. Lett. 30, 834 (2001)

    Article  Google Scholar 

  9. T. Itoh, K. Hashimoto, V. Biju, M. Ishikawa, B.R. Wood, Y. Ozaki, J. Phys. Chem. B 110, 9579 (2006)

    Article  Google Scholar 

  10. J. Jiang, K. Bosnick, M. Maillard, L. Brus, J. Phys. Chem. B 107, 9964 (2003)

    Article  Google Scholar 

  11. J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Chem. Phys. Lett. 341, 1 (2001)

    Article  ADS  Google Scholar 

  12. M. Futamata, Y. Maruyama, M. Ishikawa, J. Phys. Chem. B 107, 7607 (2003)

    Article  Google Scholar 

  13. D.A. Stuart, J.M. Yuen, N.C. Shah, O. Lyandres, C.R. Yonzon, M.R. Glucksberg, J.T. Walsh, R.P. Van Duyne, Anal. Chem. 78, 7211 (2006), and references therein

    Article  Google Scholar 

  14. J.A. Dieringer, A.D. McFarland, N.C. Shah, D.A. Stuart, A.V. Whitney, C.R. Yonzon, M.A. Young, X. Zhang, R.P. Van Duyne, Faraday Discuss. 132, 9 (2006)

    Article  Google Scholar 

  15. W. Grochala, A. Kudelski, J. Bukowska, J. Raman Spectrosc. 29, 681 (1998)

    Article  ADS  Google Scholar 

  16. A. Otto, A. Bruckbauer, Y.X. Chen, J. Mol. Struct. 661–662, 501 (2003)

    Article  Google Scholar 

  17. P. Hildebrandt, M. Stockburger, J. Phys. Chem. 88, 5935 (1984)

    Article  Google Scholar 

  18. S.E.B.J. Bell, N.M. Sirimuthu, J. Phys. Chem. A 105, 7405 (2005)

    Article  Google Scholar 

  19. S.E.B.J. Bell, N.M. Sirimuthu, J. Am. Chem. Soc. 128, 15580 (2006)

    Article  Google Scholar 

  20. D.H. Jeong, N.H. Jang, J.S. Suh, M. Moskovits, J. Phys. Chem. B 104, 3594 (2000)

    Article  Google Scholar 

  21. W.E. Doering, S. Nie, J. Phys. Chem. B 106, 311 (2002)

    Article  Google Scholar 

  22. Y. Maruyama, M. Futamata, Chem. Phys. Lett. 448, 93 (2007)

    Article  ADS  Google Scholar 

  23. P.C. Lee, D.P. Meisel, J. Phys. Chem. 86, 3391 (1982)

    Article  Google Scholar 

  24. A. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science 267, 1629 (1995)

    Article  ADS  Google Scholar 

  25. Y. Maruyama, M. Futamata, Chem. Phys. Lett. 412, 65 (2005)

    Article  ADS  Google Scholar 

  26. M.A. Noginov, M. Vondrova, S.N. Williams, M. Bahoura, V.I. Gavrilenko, S.M. Black, V.P. Drachev, V.M. Shalaev, A. Sykes, J. Opt. A: Pure Appl. Opt. 7, S219 (2005)

    Article  ADS  Google Scholar 

  27. M. Futamata, Faraday Discuss. 132, 45 (2006)

    Article  Google Scholar 

  28. M. Futamata, Y. Maruyama, M. Ishikawa, J. Phys. Chem. B 108, 13119 (2004)

    Article  Google Scholar 

  29. M. Futamata, Y. Maruyama, Anal. Bioanal. Chem. 388, 89 (2007)

    Article  Google Scholar 

  30. E.C. Le Ru, M. Meyer, P.G. Etchegoin, J. Phys. Chem. B 110, 1944 (2006)

    Article  Google Scholar 

  31. R.C. Maher, P.G. Etchegoin, E.C. Le Ru, L.F. Cohen, J. Phys. Chem. B 110, 11757 (2006)

    Article  Google Scholar 

  32. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995), Chap. 2.3

    Google Scholar 

  33. J.P. Kottmann, O.J.F. Martin, Opt. Express 8, 655 (2001)

    Article  ADS  Google Scholar 

  34. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 4

    Google Scholar 

  35. K.S. Kunz, R.J. Luebbers, The Finite Difference Time Domain Methods for Electromagnetics (CRC Press, Boca Raton, 1993), Chap. 2

    Google Scholar 

  36. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  37. E.D. Palik, Handbook of Optical Constants of Materials, vol. II (Academic Press, New York, 1991), p. 1059

    Google Scholar 

  38. G. Compagnini, Appl. Opt. 33, 7377 (1994)

    ADS  Google Scholar 

  39. Y. Yin, X.Z.-Y. Li, B. Gates, Y. Xia, S. Venkateswaran, J. Mater. Chem. 12, 522 (2002)

    Article  Google Scholar 

  40. H.A. Atwater, J.A. Dionne, L.A. Sweatlock, in Surface Plasmon Nanophotonics, ed. by M.L. Brogersma, P.G. Kik (Springer, Berlin, 2007), Chap. 7

    Google Scholar 

  41. Gmelin Handbook of Inorganic and Organometallic Chemistry, Supplement Volume for Silver and Chlorine (Springer, 1966, 1969, and 1972)

  42. B. Wiley, T. Herricks, Y. Sun, Y. Xia, Nano Lett. 4, 1733 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Futamata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futamata, M., Maruyama, Y. LSP spectral changes correlating with SERS activation and quenching for R6G on immobilized Ag nanoparticles. Appl. Phys. B 93, 117–130 (2008). https://doi.org/10.1007/s00340-008-3179-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3179-z

PACS

Navigation