Skip to main content
Log in

Gas analysis within remote porous targets using LIDAR multi-scatter techniques

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Light detection and ranging (LIDAR) experiments are normally pursued for range resolved atmospheric gas measurements or for analysis of solid target surfaces using fluorescence of laser-induced breakdown spectroscopy. In contrast, we now demonstrate the monitoring of free gas enclosed in pores of materials, subject to impinging laser radiation, employing the photons emerging back to the surface laterally of the injection point after penetrating the medium in heavy multiple scattering processes. The directly reflected light is blocked by a beam stop. The technique presented is a remote version of the newly introduced gas in scattering media absorption spectroscopy (GASMAS) technique, which so far was pursued with the injection optics and the detector in close contact with the sample. Feasibility measurements of LIDAR-GASMAS on oxygen in polystyrene foam were performed at a distance of 6 m. Multiple-scattering induced delays of the order of 50 ns, which corresponds to 15 m optical path length, were observed. First extensions to a range of 60 m are discussed. Remote observation of gas composition anomalies in snow using differential absorption LIDAR (DIAL) may find application in avalanche victim localization or for leak detection in snow-covered natural gas pipelines. Further, the techniques may be even more useful for short-range, non-intrusive GASMAS measurements, e.g., on packed food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fujii, T. Fukuchi (eds.), Laser Remote Sensing (CRC Press, Boca Raton, 2005)

    Google Scholar 

  2. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, Heidelberg, 2005)

    Google Scholar 

  3. D. Killinger, Lidar and laser remote sensing, in Handbook on Vibrational Spectroscopy (Wiley, New York, 2002)

    Google Scholar 

  4. S. Svanberg, LIDAR, in Springer Handbook of Lasers and Optics, ed. by F. Träger (Springer, Heidelberg, 2007), pp. 1031–1052

    Google Scholar 

  5. S. Svanberg, Fluorescence spectroscopy and imaging of LIDAR targets, in Laser Remote Sensing (CRC Press, Boca Raton, 2005), Chap. 7

    Google Scholar 

  6. Conference Proceedings, 24th International Laser Radar Conference, NOAA, NCAR Boulder, Colorado, 23–27 June 2008

  7. S. Svanberg, Differential absorption LIDAR (DIAL), in Air Monitoring by Spectroscopic Techniques, ed. by M. Sigrist (Wiley, New York, 1994), Chap. 3

    Google Scholar 

  8. A.G. Borovoi (ed.), in Proc. 13th International Workshop on LIDAR Multiple Scattering Experiments. SPIE, vol. 5829 (2005)

  9. G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee (eds.), Medical Optical Tomography, Functional Imaging and Monitoring. SPIE Institute Series, vol. 11 (SPIE, Bellingham, 1993)

    Google Scholar 

  10. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, 2003)

    Google Scholar 

  11. C. af Klinteberg, A. Pifferi, S. Andersson-Engels, R. Cubeddu, S. Svanberg, In vivo absorption spectroscopy of tumor sensitizers using femtosecond white light. Appl. Opt. 44, 2213 (2005)

    Article  ADS  Google Scholar 

  12. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre. Opt. Express 12, 4103 (2004)

    Article  ADS  Google Scholar 

  13. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg, Analysis of gas dispersed in scattering solids and liquids. Opt. Lett. 26, 16 (2001)

    Article  ADS  Google Scholar 

  14. G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, Concentration measurement of gas imbedded in scattering media employing time and spatially resolved techniques. Appl. Opt. 41, 3538 (2002)

    Article  ADS  Google Scholar 

  15. L. Persson, H. Gao, M. Sjöholm, S. Svanberg, Diode laser absorption spectroscopy for studies of gas exchange in fruits. Lasers Opt. Eng. 44, 687 (2006)

    Article  Google Scholar 

  16. T. Svensson, L. Persson, M. Andersson, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Noninvasive characterization of pharmaceutical solids by diode laser oxygen spectroscopy. Appl. Spectrosc. 61, 784 (2007)

    Article  ADS  Google Scholar 

  17. M. Andersson, L. Persson, M. Sjöholm, S. Svanberg, Spectroscopic studies of wood-drying processes. Opt. Express 14, 3641 (2006)

    Article  ADS  Google Scholar 

  18. L. Persson, K. Svanberg, S. Svanberg, On the potential for human sinus cavity diagnostics using diode laser gas spectroscopy. Appl. Phys. B 82, 313 (2006)

    Article  ADS  Google Scholar 

  19. L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, S. Svanberg, Gas monitoring in human sinuses using tunable diode laser spectroscopy. J. Biomed. Opt. 12(5), 54001 (2007)

    Article  Google Scholar 

  20. M. Cassel-Engquist, R. Grönlund, M. Andersson, L. Persson, S. Svanberg, Remote gas detection in solid scattering media using differential absorption LIDAR. CLEO Europe, Munich (2007)

  21. P. Weibring, H. Edner, S. Svanberg, Versatile mobile LIDAR system for environmental monitoring. Appl. Opt. 42, 3583 (2003)

    Article  ADS  Google Scholar 

  22. Z.S. Li, J. Norin, A. Persson, C.G. Wahlström, S. Svanberg, P.S. Doidge, E. Biémont, Radiative properties of neutral germanium obtained from excited state lifetime and branching ratio measurements and comparison with theoretical calculations. Phys. Rev. A 60, 198 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Svanberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Z.G., Lewander, M., Grönlund, R. et al. Gas analysis within remote porous targets using LIDAR multi-scatter techniques. Appl. Phys. B 93, 657–663 (2008). https://doi.org/10.1007/s00340-008-3171-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3171-7

PACS

Navigation