Skip to main content
Log in

Electric field effect on the optically-pumped far-infrared laser

Applied Physics B Aims and scope Submit manuscript

Abstract

This study investigates the effects of the electric field on the optically-pumped far-infrared (OPFIR) laser. The main mechanisms responsible for the change of the laser output power due to the electric field are considered to be the non-linear Hanle effect (NLHE) and Stark splitting. However, both the rate-equation calculation and the experiments with the circular hollow Stark waveguide OPFIR laser show that the conventional NLHE provides a relatively limited power increase via enhanced absorption. Significant power enhancement is observed in the rectangular waveguide only when both the absorption and emission processes are ΔM=±1 transitions, where the classical Hanle effect (CHE) is considered to be applicable. By including constructive interference, the power increase due to the CHE is calculated for the parallel and orthogonal lines. Experimental results from the rectangular waveguide OPFIR laser show good agreement with the new calculation taking into account the classical Hanle and Stark splitting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M.S. Tobin, R.E. Jensen, Appl. Opt. 15, 2023–2024 (1976)

    Article  ADS  Google Scholar 

  2. M.S. Tobin, R.E. Jensen, IEEE J. Quantum Electron. 13, 481–484 (1977)

    Article  ADS  Google Scholar 

  3. W. Culshaw, J. Kannelaud, Phys. Rev. 136, A1209–A1221 (1964)

    Article  ADS  Google Scholar 

  4. G. Bionducci, M. Inguscio, A. Moretti, F. Strumia, Infrared Phys. 19, 297–308 (1979)

    Article  ADS  Google Scholar 

  5. M. Inguscio, A. Moretti, F. Strumia, IEEE J. Quantum Electron. 16, 955–964 (1980)

    Article  ADS  Google Scholar 

  6. K.P. Koo, P.C. Claspy, Appl. Opt. 18, 1314–1321 (1979)

    Article  ADS  Google Scholar 

  7. J. Yoshida, A. Saito, M. Kobayashi, K. Sakai, S. Fujita, Jpn. J. Appl. Phys. 19, 2527–2528 (1980)

    Article  ADS  Google Scholar 

  8. J.O. Henningsen, J. Mol. Spectrosc. 83, 70–93 (1980)

    Article  ADS  Google Scholar 

  9. G. Moruzzi, F. Strumia, N. Beverini, in The Hanle Effect and Level-Crossing Spectroscopy, ed. by G. Moruzzi, F. Strumia (Plenum, New York, 1991)

    Google Scholar 

  10. M.S. Cheon, J.W. Juhn, Y.S. Hwang, Appl. Opt. 45, 7131–7136 (2006)

    Article  ADS  Google Scholar 

  11. T.Y. Chang, IEEE Trans. Microwave Theory Tech. 22, 983–988 (1974)

    Article  Google Scholar 

  12. A. Labate, N.R. Heckenberg, R. Meucci, M. Ciofini, Appl. Phys. B 56, 307–311 (1933)

    Article  ADS  Google Scholar 

  13. E.B. Alexandrov, M.P. Chaika, G.I. Khvostenko, Interference of Atomic States (Springer, Berlin, 1993)

    Google Scholar 

  14. R.N. Zare, Acc. Chem. Res. 4, 361–367 (1971)

    Article  Google Scholar 

  15. G. Breit, Rev. Mod. Phys. 5, 91–140 (1933)

    Article  MATH  ADS  Google Scholar 

  16. P.A. Franken, Phys. Rev. 121, 508–512 (1961)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Cheon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheon, M.S., Juhn, J.W. & Hwang, Y.S. Electric field effect on the optically-pumped far-infrared laser. Appl. Phys. B 93, 575–582 (2008). https://doi.org/10.1007/s00340-008-3163-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3163-7

PACS

Navigation