Applied Physics B

, 92:343 | Cite as

Laser-based systems for trace gas detection in life sciences

  • S.M. Cristescu
  • S.T. Persijn
  • S. te Lintel Hekkert
  • F.J.M. Harren


Infrared gas phase spectroscopy is becoming very common in many life science applications. Here we present three types of trace gas detection systems based on CO2 laser and continuous wave (cw) optical parametric oscillator (OPO) in combination with photoacoustic spectroscopy and cw quantum cascade laser (QCL) in combination with wavelength modulation spectroscopy. Examples are included to illustrate the suitability of CO2 laser system to monitor in real time ethylene emission from various dynamic processes in plants and microorganisms as well as from car exhausts. The versatility of an OPO-based detector is demonstrated by simultaneous detection of 13C-methane and 12C-methane (at 3240 nm) at similar detection limits of 0.1 parts per billion by volume. Recent progress on a QCL-based spectrometer using a continuous wave QCL (output power 25 mW, tuning range of 1891–1908 cm-1) is presented and a comparison is made to a standard chemiluminescence instrument for analysis of NO in exhaled breath.


Nitric Oxide Optical Parameter Oscillator Quantum Cascade Laser Photoacoustic Spectroscopy Photoacoustic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.W. Sigrist, Rev. Sci. Instrum. 74, 486 (2003)CrossRefADSGoogle Scholar
  2. 2.
    F.J.M. Harren, G. Cotti, J. Oomens, S. te Lintel Hekkert, In: Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, New York, 2000)Google Scholar
  3. 3.
    F.K. Tittel, D. Richter, A. Fried, In: Solid-state Mid-infrared Laser Sources, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, 2003)Google Scholar
  4. 4.
    M. Mürtz, D. Halmer, M. Horstjann, S. Thelen, P. Hering, Spectrochim. Acta A 63, 963 (2006)CrossRefGoogle Scholar
  5. 5.
    M.M.J.W. van Herpen, S.E. Bisson, A.K.Y. Ngai, F.J.M. Harren, Appl. Phys. B 78, 281 (2004)CrossRefADSGoogle Scholar
  6. 6.
    S.E. Bisson, K.M. Armstrong, T.J. Kulp, M. Hartings, Appl. Opt. 40, 6049 (2001)CrossRefADSGoogle Scholar
  7. 7.
    F. Müller, A. Popp, F. Kühnemann, S. Schiller, Opt. Express 11, 2820 (2003)ADSGoogle Scholar
  8. 8.
    M.E. Klein, C.K. Laue, D.H. Lee, K.J. Boller, R. Wallenstein, Opt. Lett. 25, 490 (2000)CrossRefADSGoogle Scholar
  9. 9.
    S.E. Bisson, T.J. Kulp, O. Levi, J.S. Harris, M.M. Fejer, Appl. Phys. B 85, 199 (2006)CrossRefADSGoogle Scholar
  10. 10.
    W.D. Chen, E. Poullet, J. Burie, D. Boucher, M.W. Sigrist, J.J. Zondy, L. Isaenko, A. Yelisseyev, S. Lobanov, Appl. Opt. 44, 4123 (2005)CrossRefADSGoogle Scholar
  11. 11.
    D. Richter, P. Weibring, Appl. Phys. B 82, 479 (2006)CrossRefADSGoogle Scholar
  12. 12.
    F.K. Tittel, Y. Bakhirkin, A.A. Kosterev, G. Wysocki, Rev. Laser. Eng. 34, 275 (2006)Google Scholar
  13. 13.
    F.J.M. Harren, J. Reuss, In: Encyclopedia of Applied Physics, ed. by G.L. Trigg (VCH, Weinheim, 1997), Vol. 19Google Scholar
  14. 14.
    R.J. Brewer, C.W. Bruce, J.L. Mater, Appl. Opt. 21, 4092 (1982)ADSGoogle Scholar
  15. 15.
    http://www.sensor-sense.nlGoogle Scholar
  16. 16.
    F.G.C. Bijnen, H. Zuckermann, F.J.M. Harren, J. Reuss, Appl. Opt. 37, 3345 (1998)CrossRefADSGoogle Scholar
  17. 17.
    F.J.M. Harren, L.J.J. Laarhoven, In: Optics Encyclopedia, ed. by T.G. Brown, K. Creath, H. Kogelnik, M.A. Kriss, J. Schmit, M.J. Weber (Wiley-VCH, Weinheim, 2004)Google Scholar
  18. 18.
    A.K.Y. Ngai, S.T. Persijn, M.M.J.W. van Herpen, S.M. Cristescu, F.J.M. Harren, In: Mid-infrared Coherent Sources and Applications, ed. by M. Ebrahim-Zadeh, I.T. Sorokina (Springer, Dordrecht, 2007)Google Scholar
  19. 19.
    R. Peeters, G. Berden, A. Olafsson, L.J.J. Laarhoven, G. Meijer, Chem. Phys. Lett. 337, 231 (2001)CrossRefADSGoogle Scholar
  20. 20.
    A.K.Y. Ngai, S.T. Persijn, I.D. Lindsay, A.A. Kosterev, P. Gross, C.J. Lee, S.M. Cristescu, F.K. Tittel, K.J. Boller, F.J.M. Harren, Appl. Phys. B 89, 123 (2007)CrossRefADSGoogle Scholar
  21. 21.
    A.K.Y. Ngai, S.T. Persijn, G. von Basum, F.J.M. Harren, Appl. Phys. B 85, 173 (2006)CrossRefADSGoogle Scholar
  22. 22.
    A.K.Y. Ngai, H. Verbraak, S.T. Persijn, H. Linnartz, F.J.M. Harren, Appl. Phys. Lett. 90, 081109 (2007)CrossRefADSGoogle Scholar
  23. 23.
    S.T. Persijn, A.K.Y. Ngai, F.J.M. Harren, I.D. Lindsay, P. Gross, B. Adhimoolam, K.J. Boller, In: Proc. of CLEO Europe, München, 17–22 June 2007, paper CD3-6-MONGoogle Scholar
  24. 24.
    B.W.M. Moeskops, S.M. Cristescu, F.J.M. Harren, Opt. Lett. 31, 823 (2006)CrossRefADSGoogle Scholar
  25. 25. Scholar
  26. 26.
    F.G.C. Bijnen, J. Reuss, F.J.M. Harren, Rev. Sci. Instrum. 67, 2914 (1996)CrossRefADSGoogle Scholar
  27. 27.
    A. Gianinetti, L.J.J. Laarhoven, S.T. Persijn F.J.M. Harren, L. Petruzzelli, Ann. Bot. 99, 735 (2007)CrossRefGoogle Scholar
  28. 28.
    C. Wagstaff, U. Chanasut, F.J.M. Harren, L.J. Laarhoven, B. Thomas, H.J. Rogers, A.D. Stead, J. Exp. Bot. 56, 1007 (2005)CrossRefGoogle Scholar
  29. 29.
    P.M.M. Iannetta, L.J. Laarhoven, N. Medina-Escobar, E.K. James, M.T. McManus, H.V. Davies, F.J.M. Harren, Physiol. Plant. 127, 247 (2006)CrossRefGoogle Scholar
  30. 30.
    S.C. Thain, F. Vandenbussche, L.J.J. Laarhoven, M.J. Dowson-Day, Z.Y. Wang, E.M. Tobin, F.J.M. Harren, A.J. Millar, D. van der Straeten, A.J. Millar, Plant Physiol. 136, 3751 (2004)CrossRefGoogle Scholar
  31. 31.
    M. Staal, S. te Lintel Hekkert, F. Harren, L.J. Stal, Environ. Microbiol. 3, 343 (2001)CrossRefGoogle Scholar
  32. 32.
    M. Staal, S. te Lintel Hekkert, G.J. Brummer, M. Veldhuis, C. Sikkens, S. Persijn, L.J. Stal, Limnol. Oceanogr. 52, 1305 (2007)Google Scholar
  33. 33.
    S.M. Cristescu, E.J. Woltering, F.J.M. Harren, In: Food Mycology, a Multifaceted Approach to Fungi and Food, ed. by J. Dijksterhuis, R.A. Samson (CRC Press, New York, 2007)Google Scholar
  34. 34.
    C. Montero, J.B. Jiménez, J.M. Orea, A. González Urea, S.M. Cristescu, S. te Lintel Hekkert, F.J.M. Harren, Plant Physiol. 131, 129 (2003)CrossRefGoogle Scholar
  35. 35.
    R. Schröder, S. Cristescu, F. Harren, M. Hilker, J. Exp. Bot. 58, 1835 (2007)CrossRefGoogle Scholar
  36. 36.
    F. van den Bussche, J. Smalle, J. Le, N.J. Madeira Saibo, A. de Paepe, L. Chaerle, O. Tietz, R. Smets, L.J.J. Laarhoven, F.J.M. Harren, H. van Onckelen, K. Palme, J.-P. Verbelen, D. van der Straeten, Plant Physiol. 131, 1228 (2003)CrossRefGoogle Scholar
  37. 37.
    O. Leprince, F.J.M. Harren, J. Buitink, M. Alberda, F.A. Hoekstra, Plant Physiol. 122, 597 (2000)CrossRefGoogle Scholar
  38. 38.
    M. Balota, S. Cristescu, W.A. Payne, S. te Lintel Hekkert, L.J.J. Laarhoven, F.J.M. Harren, Crop Sci. 44, 812 (2004)Google Scholar
  39. 39.
    E.T. Yakimova, V.M. Kapchina-Toteva, L.J. Laarhoven, F.M. Harren, E.J. Woltering, Plant Physiol. Biochem. 44, 581 (2006)CrossRefGoogle Scholar
  40. 40.
    P.L.M. Zusterzeel, R.P.M. Steegers-Theunissen, F.J.M. Harren, E. Stekkinger, H. Kateman, B.H. Timmerman, R. Berkelmans, A. Nieuwenhuizen, W.H.M. Peters, M.T.M. Raijmakers, E.A.P. Steegers, Hypertens. Pregnancy 21, 39 (2002)CrossRefGoogle Scholar
  41. 41.
    F.J.M. Harren, R. Berkelmans, K. Kuiper, S. te Lintel Hekkert, P. Scheepers, P. Hollander, R. Dekhuijzen, D.H. Parker, Appl. Phys. Lett. 74, 1761 (1999)CrossRefADSGoogle Scholar
  42. 42.
    B.W.M. Moeskops, M.M.L. Steeghs, K. van Swam, S.M. Cristescu, P.T.J. Scheepers, F.J.M. Harren, Physiol. Meas. 27, 1187 (2006)CrossRefGoogle Scholar
  43. 43.
    W.C. Kuster, F.J.M. Harren, J. de Gouw, Environ. Sci. Technol. 39, 1157 (2005)CrossRefGoogle Scholar
  44. 44.
    J.A. de Gouw, C. Warneke, S. te Lintel Hekkert, J.S. Holloway, D.D. Parrish, J. Peischl, T.B. Ryerson, J. Mellqvist, E.A. Atlas, A. Fried, In: Proc. of 2007 Fall Meeting of the American Geophysical Union, 10–14 December, 2007, paper A13I-06Google Scholar
  45. 45.
    M.M.J.W. van Herpen, S. Li, S.E. Bisson, F.J.M. Harren, Appl. Phys. Lett. 81, 1157 (2002)CrossRefADSGoogle Scholar
  46. 46.
    M.M.J.W. van Herpen, A.K.Y. Ngai, S.E. Bisson, J.H.P. Hackstein, E.J. Woltering, F.J.M. Harren, Appl. Phys. B 82, 665 (2006)CrossRefADSGoogle Scholar
  47. 47.
    F. Keppler, J.T.G. Hamilton, M. Brass, T. Rockmann, Nature 439, 187 (2006)CrossRefADSGoogle Scholar
  48. 48.
    T. Dueck, R. de Visser, H. Poorter, S. Persijn, A. Gorissen, W. de Visser, A. Schapendonk, J. Verhagen, J. Snel, F.J.M. Harren, A.K.Y. Ngai, F. Verstappen, H. Bouwmeester, L.A.C.J. Voesenek, A. van der Werf, New Phytol. 175, 29 (2007)CrossRefGoogle Scholar
  49. 49.
    A. Gorissen, P.J. Kuikman, J.H. Van Ginkel, H. Van de Beek, A.G. Jansen, Plant Soil 179, 81 (1996)CrossRefGoogle Scholar
  50. 50.
    R.A. Toth, L.R. Brown, R.H. Hunt, L.S. Rothman, Appl. Opt. 20, 932 (1981)ADSCrossRefGoogle Scholar
  51. 51.
    L. Fejard, J.P. Champion, J.M. Jouvard, L.R. Brown, A.S. Pine, J. Mol. Spectrosc. 201, 83 (2000)CrossRefADSGoogle Scholar
  52. 52.
    C.R. Webster, Appl. Opt. 44, 1226 (2005)CrossRefADSGoogle Scholar
  53. 53.
    M.V. Beligni, L. Lamattina, Plant Cell Environ. 24, 267 (2001)CrossRefGoogle Scholar
  54. 54.
    L.A.J. Mur, I.E. Santosa, L.J.J. Laarhoven, N.J. Holton, F.J.M. Harren, A.R. Smith, Plant Physiol. 138, 1247 (2005)CrossRefGoogle Scholar
  55. 55.
    L.E. Gustaffson, A.M. Leone, M.G. Persson, N.P. Wikuld, S. Moncada, Biochem. Biophys. Res. Commun. 181, 852 (1991)CrossRefGoogle Scholar
  56. 56.
    M.J. Lanz, D.Y.M. Leung, D.R. McCormick, R. Harbeck, S.J. Szefler, C.W. White, Pediatr. Pulmonol. 24, 305 (1997)CrossRefGoogle Scholar
  57. 57.
    D. Yao, A.G. Vlessidis, N.P. Evmiridis, Microchim. Acta 147, 1 (2004)CrossRefGoogle Scholar
  58. 58.
    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 96, 139 (2005)CrossRefADSGoogle Scholar
  59. 59.
    L.B. Kreuzer, C.K.N. Patel, Science 173, 47 (1971)CrossRefADSGoogle Scholar
  60. 60.
    D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser, Appl. Phys. B 75, 343 (2002)CrossRefADSGoogle Scholar
  61. 61.
    Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)CrossRefADSGoogle Scholar
  62. 62.
    J.G.C. van Amsterdam, A.P.J. Verlaan, H. van Loveren, S.G. Vos, A. Opperhuizen, P.A. Steerenberg, Int. Arch. Occup. Environ. Health. 72, 404 (1999)CrossRefGoogle Scholar
  63. 63.
    M.E. Klein, P. Gross, K.J. Boller, M. Auerbach, P. Wessels, C. Fallnich, Opt. Lett. 28, 920 (2003)CrossRefADSGoogle Scholar
  64. 64.
    M.M.J.W. van Herpen, S.E. Bisson, A.K.Y. Ngai, F.J.M. Harren, Appl. Phys. B 78, 281 (2004)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • S.M. Cristescu
    • 1
  • S.T. Persijn
    • 1
  • S. te Lintel Hekkert
    • 2
  • F.J.M. Harren
    • 1
  1. 1.Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and MaterialsRadboud UniversityNijmegenThe Netherlands
  2. 2.Sensor Sense BVNijmegenThe Netherlands

Personalised recommendations