Skip to main content

Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO


We describe the performance of two mid-infrared laser spectrometers for carbon monoxide, nitrous oxide and nitric oxide detection. The first spectrometer for CO and N2O detection around 2203 cm-1 is based upon all-diode laser difference frequency generation (DFG) in a quasi-phase matched periodically-poled lithium niobate (PPLN) crystal using two continuous-wave room-temperature distributed feedback diode lasers at 859 and 1059 nm. We also report on the performance of a mid-infrared spectrometer for NO detection at ∼ 1900 cm-1 based upon a thermoelectrically-cooled continuous-wave distributed feedback quantum cascade laser (QCL). Both spectrometers had a single-pass optical cell and a thermoelectrically cooled HgCdZnTe photovoltaic detector. Typical minimum detection limits of 2.8 ppmv for CO, 0.6 ppmv for N2O and 2.7 ppmv for NO have been demonstrated for a 100 averaged spectra acquired within 1.25 s and a cell base length of 21 cm at ∼ 100 Torr. Noise-equivalent absorptions of 10-5 and 10-4 Hz-1/2 are typically demonstrated for the QCL and the DFG based spectrometers, respectively.

This is a preview of subscription content, access via your institution.


  1. P.A. Martin, Chem. Soc. Rev. 31, 201 (2002)

    Article  Google Scholar 

  2. B. Gradoń, Combust. Sci. Technol. 178, 1477 (2006)

    Article  Google Scholar 

  3. F. Leipold, A. Fateev, Y. Kusano, B. Stenum, H. Bindslev, Fuel 85, 1383 (2006)

    Article  Google Scholar 

  4. R. Barron-Jimenez, J.A. Caton, T.N. Anderson, R.P. Lucht, T. Walter, S. Roy, M.S. Brown, J.R. Gord, Appl. Phys. B 85, 185 (2006)

    Article  ADS  Google Scholar 

  5. T. Nakayama, H. Fukudsa, A. Sugita, S. Hashimoto, M. Kawasaki, S. Aloisio, I. Morino, G. Inoue, Chem. Phys. 334, 196 (2007)

    Article  ADS  Google Scholar 

  6. L.J. Muzio, J.C. Kramlich, Geophys. Res. Lett. 15, 1369 (1988)

    Article  ADS  Google Scholar 

  7. K.P. Petrov, L. Goldberg, W.K. Burns, R.F. Curl, F.K. Tittel, Opt. Lett. 21, 86 (1996)

    Article  ADS  Google Scholar 

  8. K.P. Petrov, R.F. Curl, F.K. Tittel, Appl. Phys. B 66, 531 (1998)

    Article  ADS  Google Scholar 

  9. L. Deng, L. Han, W. Liang, Z. Cao, C. Xu, W. Zhang, Z. Gong, X. Gao, Opt. Lasers Eng. 45, 1055 (2007)

    Article  Google Scholar 

  10. H. Waechter, M.W. Sigrist, Appl. Phys. B 87, 539 (2007)

    Article  ADS  Google Scholar 

  11. Z. Cao, X. Gao, L. Deng, W.D. Chen, Y. Yuan, W. Zhang, Z. Gong, Spectrochim. Acta A 68, 74 (2007)

    Article  Google Scholar 

  12. J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdra, A. Muller, M. Giovannini, J. Faist, Appl. Phys. B 85, 235 (2006)

    Article  ADS  Google Scholar 

  13. D.D. Nelson, B. McManus, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Opt. Lett. 31, 2012 (2006)

    Article  ADS  Google Scholar 

  14. B.W.M. Moeskops, S.M. Cristescu, F.J.M. Harren, Opt. Lett. 31, 823 (2006)

    Article  ADS  Google Scholar 

  15. Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)

    Article  ADS  Google Scholar 

  16. V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, R.P. Wayne, Appl. Phys. B 75, 755 (2002)

    Article  ADS  Google Scholar 

  17. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.M. Flaud, R.R. Gamache, A. Goldman, J.M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2004)

  18. Z. Abd Allah, D. Sawtell, V. Kasiutsich, P. Martin, Initial Work with Non-Thermal Plasmas Produced by a Dielectric Packed Bed Reactor for the Decomposition of Volatile Organic Compounds, 5th Technological Plasmas Workshop, Belfast, 18–19 December (2007)

  19. P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V.L. Kasyutich.

Additional information


42.55.Px; 42.62.Fi; 42.65.-k; 42.72.Ai; 42.68.Ca

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kasyutich, V., Holdsworth, R. & Martin, P. Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO. Appl. Phys. B 92, 271–279 (2008).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:


  • Nitric Oxide
  • Quantum Cascade Laser
  • Difference Frequency Generation
  • Experimental Absorption Spectrum
  • PPLN Crystal