Applied Physics B

, Volume 92, Issue 2, pp 295–302 | Cite as

Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide



Active remote sensing is a promising technique to close the gaps that exist in global measurement of atmospheric carbon dioxide sources, sinks and fluxes. Several approaches are currently under development. Here, an experimental setup of an integrated path differential absorption lidar (IPDA) is presented, operating at 1.57 μm using direct detection. An injection seeded KTP-OPO system pumped by a Nd:YAG laser serves as the transmitter. The seed laser is actively stabilized by means of a CO2 reference cell. The line-narrowed OPO radiation yields a high spectral purity, which is measured by means of a long path absorption cell. First measurements of diurnal variations of the atmospheric CO2 mixing ratio using a topographic target were performed and show good agreement compared to simultaneously taken measurements of an in situ device. A further result is that the required power reference measurement of each laser pulse in combination with the spatial beam quality is a critical point of this method. The system described can serve as a testbed for further investigations of special features of the IPDA technique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, IPCC 2007: Climate Change 2007: The Physical Science Basis (Cambridge University Press, Cambridge, 2007)Google Scholar
  2. 2.
    S. Houweling, F.-M. Bréon, I. Aben, C. Rödenbeck, M. Gloor, M. Heimann, P. Ciais, Atmosph. Chem. Phys. 4, 523 (2004)ADSGoogle Scholar
  3. 3.
    C. Rödenbeck. S. Houweling, M. Gloor, M. Heimann, Atmosph. Chem. Phys. 3, 1919 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling, Appl. Phys. B 90, 593 (2008)CrossRefADSGoogle Scholar
  5. 5.
    S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.J. Reolofs, F.M. Breon, Atmosph. Chem. Phys. 5, 3003 (2005)ADSGoogle Scholar
  6. 6.
    R.J. Engelen, G.L. Stephens, J. Appl. Met. 43, 373 (2004)Google Scholar
  7. 7.
    G. Ehret, C. Kiemle, Final Report of ESA Study 10880/03/NL/FF (2005)Google Scholar
  8. 8.
    F.M. Bréon, P. Peylin, Final Report of ESA Study 15247/01/NL/MM (2003)Google Scholar
  9. 9.
    C. Weitkamp, Lidar: Range Resolved Optical Remote Sensing of the Atmosphere (Springer, Berlin Heidelberg New York, 2005)Google Scholar
  10. 10.
    G.J. Koch, B.W. Barnes, M. Petros, J.Y. Beyon, F. Amzajerdian, J. Yu, R.E. Davis, S. Ismail, S. Vay, M.J. Kavaya, U.N. Singh, Appl. Opt. 43, 5092 (2004)CrossRefADSGoogle Scholar
  11. 11.
    F. Gibert, P.H. Flamant, D. Bruneau, C. Loth, Appl. Opt. 45, 4448 (2006)CrossRefADSGoogle Scholar
  12. 12.
    S. Ismail, G.J. Koch, M.N. Abedin, T. Refaat, K. Davis, C. Miller, U.N. Singh, S. Vay, T. Mack, in Proceedings of 23rd International Laser Radar Conference (2006), pp. 349–352Google Scholar
  13. 13.
    G.D. Spiers, R.T. Menzies, D.M. Tratt, M. Phillips, in Proceedings of 2nd Annual Earth Science Technology Conference (NASA Earth Science Technology Office, Greenbelt, 2002)Google Scholar
  14. 14.
    M.A. Krainak, A.E. Andrews, G.R. Allan, J.F. Burris, H. Riris, X. Sun, J.B. Abshire, in Conference on Lasers and Electro-Optics, CLEO ’03 (2003)Google Scholar
  15. 15.
    J. L. Bufton. T. Itabe, L.L. Strow, C.L. Korb, B.M. Gentry, C.Y. Wenig, Appl. Opt. 22, 2592 (1983)ADSGoogle Scholar
  16. 16.
    N. Sugimoto, A. Minato, Appl. Opt. 32/33, 6827 (1993)ADSGoogle Scholar
  17. 17.
    W.B. Grant, Appl. Opt. 21, 2390 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    S. Ismail, E.V. Browell, Appl. Opt. 28, 3603 (1989)ADSGoogle Scholar
  19. 19.
    L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.Y. Mandin, J. Schroeder, A. Mc-Cann, R.R. Gamache, R.B. Wattson, K. Yoshino, K. Chance, K. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 60, 665 (1998)CrossRefADSGoogle Scholar
  20. 20.
    C.L. Tang, W.R. Bosenberg, T. Ukachi, R.J. Lane, L.K. Cheng, IEEE Proc. 80, 365 (1992)Google Scholar
  21. 21.
    G. Ehret, A. Fix, V. Weiß, G. Poberaj, T. Baumert, Appl. Phys. B 67, 427 (1998)CrossRefADSGoogle Scholar
  22. 22.
    J.T. Lin, Opt. Quantum Electron. 22, 283 (1990)CrossRefGoogle Scholar
  23. 23.
    F. Zernicke, J.E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973)Google Scholar
  24. 24.
    K. Fradkin-Kashi, A. Arie, P. Urenski, G. Rosenman, Opt. Lett. 25, 743 (2000)CrossRefADSGoogle Scholar
  25. 25.
    N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, Opt. Eng. 39, 1016 (2000)CrossRefADSGoogle Scholar
  26. 26.
    J.E. Bjorkholm, H.G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969)CrossRefADSGoogle Scholar
  27. 27.
    G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, Appl. Phys. B 75, 165 (2002)CrossRefADSGoogle Scholar
  28. 28.
    J. Henningsen, H. Simonsen, J. Mol. Spectrosc. 203, 16 (2000)CrossRefADSGoogle Scholar
  29. 29.
    R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, Opt. Lett. 28, 1248 (2003)CrossRefADSGoogle Scholar
  30. 30.
    T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, R. Treichel, Appl. Phys. B 87, 437 (2007)CrossRefADSGoogle Scholar
  31. 31.
    T.J. Mckee, J. Lobin, W.A. Young, Appl. Opt. 21, 725 (1982)ADSGoogle Scholar
  32. 32.
    M.J.T. Milton, P.T. Woods, Appl. Opt. 26, 2598 (1987)ADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Physik der AtmosphäreDeutsches Zentrum für Luft- und Raumfahrt (DLR) OberpfaffenhofenWesslingGermany

Personalised recommendations