Applied Physics B

, Volume 91, Issue 2, pp 283–286 | Cite as

Complete characterization of weak ultra-short near-UV pulses by spectral interferometry

  • M. Kacprowicz
  • W. Wasilewski
  • K. Banaszek


We present a method for a complete characterization of a femtosecond ultraviolet pulse when a fundamental near-infrared beam is also available. Our approach relies on generation of the second harmonic from the pre-characterized fundamental, which serves as a reference against which an unknown pulse is measured using spectral interferometry (SI). The characterization apparatus is a modified second harmonic frequency resolved optical gating setup which additionally allows for taking SI spectra. The presented method is linear in the unknown field, simple and sensitive. We checked its accuracy using test pulses generated in a thick nonlinear crystal, demonstrating the ability to measure the phase in a broad spectral range, down to 0.1% peak spectral intensity as well as retrieving π leaps in the spectral phase.


Test Pulse Reference Pulse Fundamental Beam Interference Spectrum Barium Borate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, Boston, MA, 2002)Google Scholar
  2. 2.
    C. Iaconis, I.A. Walmsley, IEEE J. Quantum Electron. QE-35, 501 (1999)CrossRefADSGoogle Scholar
  3. 3.
    D.T. Reid, I.G. Cormack, Opt. Lett. 27, 658 (2002)CrossRefADSGoogle Scholar
  4. 4.
    H.H. Telle, A. González Urena, R.J. Donovan, Laser Chemistry: Spectroscopy, Dynamics &Applications (Wiley, New York, 2007)Google Scholar
  5. 5.
    P. Hannaford (ed.), Femtosecond Laser Spectroscopy (Springer, Heidelberg, 2004)Google Scholar
  6. 6.
    X. Liu, D. Du, G. Mourou, J. Quantum Electron. 33, 1706 (1997)Google Scholar
  7. 7.
    T.B. Pittman, B.C. Jacobs, J.D. Franson, Phys. Rev. A 66, 042303 (2002)CrossRefADSGoogle Scholar
  8. 8.
    A.B. U’Ren, K. Banaszek, I.A. Walmsley, Quantum Inf. Comput. 3, 480 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    W.P. Grice, R. Erdmann, I.A. Walmsley, D. Branning, Phys. Rev. A 57, R2289 (1998)CrossRefADSGoogle Scholar
  10. 10.
    S. Linden, J. Kuhl, H. Giessen, Opt. Lett. 24, 569 (1999)ADSGoogle Scholar
  11. 11.
    P. Londero, M.E. Anderson, C. Radzewicz, C. Iaconis, I.A. Walmsley, J. Mod. Opt. 50, 179 (2003)ADSGoogle Scholar
  12. 12.
    J. Zhang, A.P. Shreenath, M. Kimmel, E. Zeek, R. Trebino, Opt. Express 11, 601 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    C.G. Durfee III, S. Backus, H.C. Kapteyn, M.M. Murnane, Opt. Lett. 24, 697 (1999)ADSGoogle Scholar
  14. 14.
    P. Baum, S. Lochbrunner, E. Riedle, Opt. Lett. 29, 210 (2004)CrossRefADSGoogle Scholar
  15. 15.
    D.N. Fittinghoff, J.L. Bowie, J.N. Sweetser, R.T. Jennings, M.A. Krumbügel, K.W. DeLong, R. Trebino, I. Walmsley, Opt. Lett. 21, 884 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    M. Takeda, H. Ina, S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982)ADSGoogle Scholar
  17. 17.
    W. Wasilewski, P. Wasylczyk, C. Radzewicz, Appl. Phys. B 78, 589 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of PhysicsNicolaus Copernicus UniversityToruńPoland

Personalised recommendations