CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm

Abstract

A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν13 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  2. 2.

    J.A. Silver, D.J. Kane, P.S. Greenberg, Appl. Opt. 34, 2787 (1995)

    ADS  Google Scholar 

  3. 3.

    H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  4. 4.

    R.K. Hanson, J.B. Jeffries, in 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Washington, DC (2006), AIAA-2006-3441

  5. 5.

    D. Richter, D.G. Lancaster, F.K. Tittle, Appl. Opt. 39, 4444 (2000)

    ADS  Google Scholar 

  6. 6.

    L.S. Rothman, D. Jacquemart, The 2004 edition of the HITRAN compilation, in 8th HITRAN Database Conference (Harvard-Smithsonian Center for Astrophysics, Boston, MA, 2004), p. 26

  7. 7.

    HITRAN web site, http://cfa-www.harvard.edu/HITRAN/

  8. 8.

    D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 36, 3298 (1997)

    ADS  Google Scholar 

  9. 9.

    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 36, 8745 (1997)

    ADS  Google Scholar 

  10. 10.

    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Meas. Sci. Technol. 9, 327 (1998)

    Article  ADS  Google Scholar 

  11. 11.

    M.E. Webber, S. Kim, S.T. Sanders, D.S. Baer, R.K. Hanson, Y. Ikeda, Appl. Opt. 40, 821 (2001)

    Article  ADS  Google Scholar 

  12. 12.

    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 37, 8341 (1998)

    ADS  Article  Google Scholar 

  13. 13.

    Nanosystems and Technologies GmbH, http://www.nanoplus.com

  14. 14.

    A. Farooq, H. Li, J.B. Jeffries, R.K. Hanson, in AIAA 43rd Joint Propulsion Conference, Washington, DC (2007), AIAA-2007-5015

  15. 15.

    D.S. Baer, V. Nagali, E.R. Furlong, R.K. Hanson, M.E. Newfield, AIAA J. 34, 489 (1996)

    Article  ADS  Google Scholar 

  16. 16.

    V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson, Appl. Opt. 35, 4026 (1996)

    ADS  Google Scholar 

  17. 17.

    A. Goldman, R.R. Gamache, A. Perrin, J.M. Flaud, C.P. Rinsland, L.S. Rothman, J. Quant. Spectrosc. Radiat. Transf. 66, 455 (2000)

    Article  ADS  Google Scholar 

  18. 18.

    E.E. Whiting, J. Quant. Spectrosc. Radiat. Transf. 16, 611 (1976)

    Article  Google Scholar 

  19. 19.

    X. Liu, J.B. Jeffries, R.K. Hanson, K.M. Hinckley, M.A. Woodmansee, Appl. Phys. B 82, 469 (2006)

    Article  ADS  Google Scholar 

  20. 20.

    M.A. Oehlschlaeger, D.F. Davidson, R.K. Hanson, J. Phys. Chem. A 108, 4247 (2004)

    Article  Google Scholar 

  21. 21.

    J.T. Herbon, R.K. Hanson, D.M. Golden, C.T. Bowman, Proc. Combust. Inst. 29, 1201 (2002)

    Article  Google Scholar 

  22. 22.

    C.R. Shaddix, Proc. Natl. Heat Transfer Conf. 33, 282 (1999)

    Google Scholar 

  23. 23.

    I. Glassman, Combustion (Academic, San Diego, CA, 1996)

    Google Scholar 

  24. 24.

    C.T. Bowman, R.K. Hanson, J. Phys. Chem. 83, 757 (1979)

    Article  Google Scholar 

  25. 25.

    R.K. Hanson, D.F. Davidson, in Handbook of Shock Waves, vol. 1, ed. by G. Ben-Dor, O. Igra, T. Elperin (Academic, San Diego, CA, 2001), Chap. 5.2

  26. 26.

    H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 114, 149 (1998)

    Article  Google Scholar 

  27. 27.

    D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet. 36, 510 (2004)

    Article  Google Scholar 

  28. 28.

    M. Chaos, A. Kazakov, Z. Zhao, F.L. Dryer, Int. J. Chem. Kinet. 39, 399 (2007)

    Article  Google Scholar 

  29. 29.

    R. Seiser, H. Pitsch, K. Seshadri, W.J. Pitz, H.J. Curran, Proc. Combust. Inst. 28, 2029 (2000)

    Article  Google Scholar 

  30. 30.

    H. Li, Z.C. Owens, D.F. Davidson, R.K. Hanson, Int. J. Chem. Kinet., in press

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Farooq.

Additional information

PACS

42.62.Fi; 42.55.Px; 07.07.Df

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Farooq, A., Jeffries, J. & Hanson, R. CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619–628 (2008). https://doi.org/10.1007/s00340-007-2925-y

Download citation

Keywords

  • Mole Fraction
  • Equivalence Ratio
  • Absorption Sensor
  • Absorption Line Shape
  • Ignition Experiment