Skip to main content

Tunable diode laser spectroscopy of helium clusters

Abstract

Helium clusters, HeN-X, containing a probe molecule, X, are studied by infrared spectroscopy for the size range N≈1∼100. Spectra are observed using a supersonic jet expansion and a tunable diode laser source operating in a rapid-scan (sweep integration) mode. The pulsed jet uses a dilute gas mixture of the probe molecule in helium, with relatively high backing pressures (5–50 bar), and a cooled (80–295 K) nozzle. Sensitivity is enhanced by multi-passing the laser beam through the jet with a toroidal mirror system. The clusters are larger than van der Waals dimers and trimers, but smaller than those encountered in the field of helium nanodroplets (N≈103–105). Furthermore, individual cluster sizes are resolved here, but not with nanodroplets, and infrared absorption is detected directly (change in transmitted laser intensity), rather than indirectly (change in cluster fragmentation). Trends in the spectra are described for five probe molecules, X=CO, SiH4, OCS, N2O, and CO2. Superfluid effects dominate for clusters larger than N≈8. Notable results include the unexpected observation of broad oscillations in the effective rotational constants as a function of cluster size.

This is a preview of subscription content, access via your institution.

References

  1. S. Goyal, D.L. Schutt, G. Scoles, Phys. Rev. Lett. 69, 933 (1992)

    Article  ADS  Google Scholar 

  2. M. Hartmann, R.E. Miller, J.P. Toennies, A. Vilesov, Phys. Rev. Lett. 75, 1566 (1995)

    Article  ADS  Google Scholar 

  3. S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279, 2083 (1998)

    Article  ADS  Google Scholar 

  4. S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 112, 4485 (2000)

    Article  ADS  Google Scholar 

  5. S. Grebenev, M. Havenith, F. Madeja, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 113, 9060 (2000)

    Article  ADS  Google Scholar 

  6. M. Kunze, P.R.L. Marwick, N. Pörtner, J. Reuss, M. Havenith, J. Chem. Phys. 116, 7473 (2002)

    Article  ADS  Google Scholar 

  7. M.Y. Choi, G.E. Douberly, T.M. Falconer, W.K. Lewis, C.M. Lindsay, J.M. Merritt, P.L. Stiles, R.E. Miller, Int. Rev. Phys. Chem. 25, 15 (2006)

    Article  Google Scholar 

  8. J.P. Toennies, A.F. Vilesov, Ann. Rev. Phys. Chem. 49, 1 (1998)

    Article  Google Scholar 

  9. C. Callegari, K.K. Lehmann, R. Schmied, G. Scoles, J. Chem. Phys. 115, 10090 (2001)

    Article  ADS  Google Scholar 

  10. J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Edit. 43, 2622 (2004)

    Article  Google Scholar 

  11. M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro, M. Pi, J. Low Temp. Phys. 142, 1 (2006)

    Google Scholar 

  12. U. Even, I. Al-Hroub, J. Jortner, J. Chem. Phys. 115, 2069 (2001)

    Article  ADS  Google Scholar 

  13. J. Tang, A.R.W. McKellar, J. Chem. Phys. 115, 3053 (2001)

    Article  ADS  Google Scholar 

  14. Y. Xu, W. Jäger, Chem. Phys. Lett. 350, 417 (2001)

    Article  ADS  Google Scholar 

  15. J. Tang, Y. Xu, A.R.W. McKellar, W. Jäger, Science 297, 2030 (2002)

    Article  ADS  Google Scholar 

  16. J. Tang, A.R.W. McKellar, J. Chem. Phys. 119, 5467 (2003)

    Article  ADS  Google Scholar 

  17. D.E. Jennings, Appl. Opt. 19, 2695 (1980)

    Article  ADS  Google Scholar 

  18. A. De Piante, E.J. Campbell, S.J. Buelow, Rev. Sci. Instrum. 60, 858 (1989)

    Article  ADS  Google Scholar 

  19. S.W. Sharpe, Y.P. Zeng, C. Wittig, R.A. Beaudet, J. Chem. Phys. 92, 943 (1990)

    Article  ADS  Google Scholar 

  20. T.A. Hu, E.L. Chappell, S.W. Sharpe, J. Chem. Phys. 98, 6162 (1993)

    Article  ADS  Google Scholar 

  21. M.D. Brookes, D.J. Hughes, B.J. Howard, J. Chem. Phys. 104, 5391 (1996)

    Article  ADS  Google Scholar 

  22. Z. Abusara, L. Borvayeh, N. Moazzen-Ahmadi, A.R.W. McKellar, J. Chem. Phys. 125, 144306 (2006)

    Article  ADS  Google Scholar 

  23. M.D. Brookes, C. Xia, J. Tang, J.A. Anstey, B.G. Fulsom, K.-X. Au Yong, J.M. King, A.R.W. McKellar, Spectrochim. Acta A 60, 3235 (2004)

    Article  Google Scholar 

  24. C.E. Chuaqui, R.J. Le Roy, A.R.W. McKellar, J. Chem. Phys. 101, 39 (1994)

    Article  ADS  Google Scholar 

  25. R.J. Le Roy, C. Bissonette, T.H. Wu, A.K. Dham, W.J. Meath, Faraday Disc. Chem. Soc. 97, 81 (1994)

    Google Scholar 

  26. B. Kukawska-Tarnawska, G. Chalasinski, K. Olszewski, J. Chem. Phys. 101, 4964 (1994)

    Article  ADS  Google Scholar 

  27. F.-M. Tao, S. Drucker, R.C. Cohen, W. Klemperer, J. Chem. Phys. 101, 8680 (1994)

    Article  ADS  Google Scholar 

  28. R. Moszynski, T. Korona, P.E.S. Wormer, A. van der Avoird, J. Chem. Phys. 103, 321 (1995)

    Article  ADS  Google Scholar 

  29. T.G.A. Heijmen, R. Moszynski, P.E.S. Wormer, A. van der Avoird, J. Chem. Phys. 107, 9921 (1997)

    Article  ADS  Google Scholar 

  30. R. Kobayashi, R.D. Amos, J.P. Reid, H.M. Quiney, C.J.S.M. Simpson, Mol. Phys. 98, 1995 (2000)

    Article  ADS  Google Scholar 

  31. F.A. Gianturco, F. Paesani, Mol. Phys. 99, 689 (2001)

    Article  ADS  Google Scholar 

  32. W.B. Zeimen, G.C. Groenenboom, A. van der Avoird, J. Chem. Phys. 119, 131 (2003)

    Article  ADS  Google Scholar 

  33. K.A. Petersen, G.C. McBane, J. Chem. Phys. 123, 084314 (2005)

    Article  ADS  Google Scholar 

  34. M.-C. Chan, A.R.W. McKellar, J. Chem. Phys. 105, 7910 (1996)

    Article  ADS  Google Scholar 

  35. A.R.W. McKellar, Y. Xu, W. Jäger, C. Bissonette, J. Chem. Phys. 110, 10766 (1999)

    Article  ADS  Google Scholar 

  36. L.A. Surin, D.A. Roth, I. Pak, B.S. Dumesh, F. Lewen, G. Winnewisser, J. Chem. Phys. 112, 4064 (2000)

    Article  ADS  Google Scholar 

  37. Y. Xu, A.R.W. McKellar, Mol. Phys. 88, 859 (1996)

    Article  ADS  Google Scholar 

  38. I. Scheele, M. Havenith, Mol. Phys. 101, 1423 (2003)

    Article  ADS  Google Scholar 

  39. J. Tang, A.R.W. McKellar, J. Chem. Phys. 119, 754 (2003)

    Article  ADS  Google Scholar 

  40. A.R.W. McKellar, J. Chem. Phys. 121, 6868 (2004)

    Article  ADS  Google Scholar 

  41. A.R.W. McKellar, J. Chem. Phys. 125, 164328 (2006)

    Article  ADS  Google Scholar 

  42. K. von Haeften, S. Rudolph, I. Simanovski, M. Havenith, R. Zillich, K.B. Whaley, Phys. Rev. B 73, 054502 (2006)

    Article  ADS  Google Scholar 

  43. F.A. Gianturco, M. Lewerenz, F. Paesani, J.P. Toennies, J. Chem. Phys. 112, 2239 (2000)

    Article  ADS  Google Scholar 

  44. F. Paesani, F.A. Gianturco, J. Chem. Phys. 116, 10170 (2002)

    Article  ADS  Google Scholar 

  45. P. Cazzato, S. Paolini, S. Moroni, S. Baroni, J. Chem. Phys. 120, 9071 (2004)

    Article  ADS  Google Scholar 

  46. R. Zillich, F. Paesani, Y. Kwon, K.B. Whaley, J. Chem. Phys. 123, 114301 (2005)

    Article  ADS  Google Scholar 

  47. T. Skrbic, S. Moroni, S. Baroni, J. Phys. Chem. A 111, 7640 (2007)

    Article  Google Scholar 

  48. C. Wenger, J.-P. Champion, J. Quantum Spectrosc. Rad. Transf. 59, 471 (1998) [http://icb.u-bourgogne.fr/OMR/SMA/SHTDS/STDS.html]

    Google Scholar 

  49. J. Tang, A.R.W. McKellar, F. Mezzacapo, S. Moroni, Phys. Rev. Lett. 92, 145503 (2004)

    Article  ADS  Google Scholar 

  50. J. Tang, A.R.W. McKellar, J. Chem. Phys. 121, 181 (2004)

    Article  ADS  Google Scholar 

  51. F. Paesani, Y. Kwon, K.B. Whaley, Phys. Rev. Lett. 94, 153401 (2005)

    Article  ADS  Google Scholar 

  52. M.D. Brookes, D.J. Hughes, B.J. Howard, J. Chem. Phys. 104, 5391 (1996)

    Article  ADS  Google Scholar 

  53. M.D. Brookes, D.J. Hughes, B.J. Howard, J. Chem. Phys. 107, 2738 (1997)

    Article  ADS  Google Scholar 

  54. M. Wangler, D.A. Roth, G. Winnewisser, I. Pak, A.R.W. McKellar, Can. J. Phys. 79, 423 (2001)

    Article  ADS  Google Scholar 

  55. K. Nauta, R.E. Miller, J. Chem. Phys. 115, 10254 (2001)

    Article  ADS  Google Scholar 

  56. Y. Xu, W. Jäger, J. Tang, A.R.W. McKellar, Phys. Rev. Lett. 91, 163401 (2003)

    Article  ADS  Google Scholar 

  57. X.-G. Wang, T. Carrington Jr., J. Tang, A.R.W. McKellar, J. Chem. Phys. 123, 034301 (2005)

    Article  ADS  Google Scholar 

  58. A.R.W. McKellar, Y. Xu, W. Jäger, Phys. Rev. Lett. 97, 183401 (2006)

    Article  ADS  Google Scholar 

  59. A.R.W. McKellar, Y. Xu, W. Jäger, J. Phys. Chem. A 111, 7329 (2007)

    Article  Google Scholar 

  60. A.R.W. McKellar, J. Chem. Phys. 127, 044315 (2007)

    Article  ADS  Google Scholar 

  61. Y. Xu, N. Blinov, W. Jäger, P.-N. Roy, J. Chem. Phys. 124, 081101 (2006)

    Article  ADS  Google Scholar 

  62. A.R.W. McKellar, J. Chem. Phys., in press

  63. H. Hoshina, J. Lucrezi, M.N. Slipchenko, K.E. Kuyanov, A.F. Vilesov, Phys. Rev. Lett. 94, 195301 (2005)

    Article  ADS  Google Scholar 

  64. R. Lehnig, W. Jäger, Chem. Phys. Lett. 424, 146 (2006)

    Article  ADS  Google Scholar 

  65. B. Chang, O. Akin-Ojo, R. Bukowski, K. Szalewicz, J. Chem. Phys. 119, 11654 (2003)

    Article  ADS  Google Scholar 

  66. F. Paesani, F.A. Gianturco, K.B. Whaley, J. Chem. Phys. 115, 10225 (2001)

    Article  ADS  Google Scholar 

  67. F. Paesani, A. Viel, F.A. Gianturco, K.B. Whaley, Phys. Rev. Lett. 90, 073401 (2003)

    Article  ADS  Google Scholar 

  68. S. Moroni, A. Sarsa, S. Fantoni, K.E. Schmidt, S. Baroni, Phys. Rev. Lett. 90, 143401 (2003)

    Article  ADS  Google Scholar 

  69. F. Paesani, K.B. Whaley, J. Chem. Phys. 121, 4180 (2004)

    Article  ADS  Google Scholar 

  70. R. Zillich, F. Paesani, Y. Kwon, K.B. Whaley, J. Chem. Phys. 123, 114301 (2005)

    Article  ADS  Google Scholar 

  71. S. Paolini, S. Fantoni, S. Moroni, S. Baroni, J. Chem. Phys. 123, 114306 (2005)

    Article  ADS  Google Scholar 

  72. S. Miura, J. Chem. Phys. 126, 114309 (2007)

    Article  ADS  Google Scholar 

  73. S. Moroni, N. Blinov, P.-N. Roy, J. Chem. Phys. 121, 3577 (2004)

    Article  ADS  Google Scholar 

  74. F. Paesani, K.B. Whaley, J. Chem. Phys. 121, 5293 (2004)

    Article  ADS  Google Scholar 

  75. Y. Kwon, F. Paesani, K.B. Whaley, Phys. Rev. B 74, 174522 (2006)

    Article  ADS  Google Scholar 

  76. S. Moroni, M. Botti, S. De Palo, A.R.W. McKellar, J. Chem. Phys. 122, 094314 (2005)

    Article  ADS  Google Scholar 

  77. J. Tang, A.R.W. McKellar, J. Chem. Phys. 121, 3087 (2004)

    Article  ADS  Google Scholar 

  78. J. Tang, A.R.W. McKellar, J. Chem. Phys. 123, 114314 (2005)

    Article  ADS  Google Scholar 

  79. V.L. Ginzburg, A.A. Sobyanin, JETP Lett. 15, 242 (1972)

    ADS  Google Scholar 

  80. S. Grebenev, B. Sartakov, J.P. Toennies, A.F. Vilesov, Science 289, 1532 (2000)

    Article  ADS  Google Scholar 

  81. H.D. Osthoff, W. Jäger, Mol. Phys. 104, 2861 (2006)

    Article  ADS  Google Scholar 

  82. Y. Xu, W. Jäger, L. Surin, private communications (2005)

  83. A.F. Vilesov, private communication (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.R.W. Mc Kellar.

Additional information

PACS

33.20.Ea; 34.30.+h; 36.40.Mr; 42.55.Px

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mc Kellar, A. Tunable diode laser spectroscopy of helium clusters. Appl. Phys. B 90, 213–225 (2008). https://doi.org/10.1007/s00340-007-2881-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2881-6

Keywords

  • Cluster Size
  • Probe Molecule
  • Helium Cluster
  • Backing Pressure
  • Helium Nanodroplets