Skip to main content

Comparison of a quantum cascade laser used in both cw and pulsed modes. Application to the study of SO2 lines around 9 μm

Abstract

The same quantum cascade laser spectrometer working around 9 μm was used in both continuous-wave and pulsed modes to compare their own characteristics. The laser emitting in continuous-wave mode was mainly used to study some spectroscopic parameters of SO2 ro-vibrational lines. This work demonstrates the necessity to use new calculations previously developed instead of conventional databases such as HITRAN. In addition, the same laser emitting in pulsed mode with long pulses (600 to 900 ns) was used to record SO2 spectra with the intrapulse technique. This work permits us to make comparisons about those two modes of emission for the development of future spectrometers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  2. 2.

    C. Sirtori, J. Nagle, CR Physique 4, 639 (2003)

    Article  ADS  Google Scholar 

  3. 3.

    D. Hofstetter, M. Beck, J. Faist, M. Nägele, M.W. Sigrist, Opt. Lett. 26, 887 (2001)

    Article  ADS  Google Scholar 

  4. 4.

    B.A. Paldus, T.G. Spence, R.N. Zare, J. Oomens, F.J. Harren, D.H. Parker, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 24, 178 (1999)

    ADS  Google Scholar 

  5. 5.

    D.D. Nelson, B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta A 60, 3325 (2004)

    Article  Google Scholar 

  6. 6.

    A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.M. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 39, 4425 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    S. Blaser, D.A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, J. Faist, Appl. Phys. Lett. 86, 041109/1 (2005)

    Google Scholar 

  8. 8.

    D. Courtois, A. Delahaigue, C. Thiebeaux, Proc. SPIE 1341, 152 (1990)

    Article  ADS  Google Scholar 

  9. 9.

    B. Parvitte, C. Thiebeaux, D. Courtois, Spectrochim. Acta A 55, 2027 (1999)

    Article  Google Scholar 

  10. 10.

    B. Parvitte, L. Joly, V. Zéninari, D. Courtois, Spectrochim. Acta A 60, 3285 (2004)

    Article  Google Scholar 

  11. 11.

    L. Joly, V. Zeninari, B. Parvitte, D. Courtois, G. Durry, Opt. Lett. 31, 143 (2006)

    Article  ADS  Google Scholar 

  12. 12.

    L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quant. Spectrosc. Radiat. Transf. 82, 5 (2003)

    Article  ADS  Google Scholar 

  13. 13.

    A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, J. Faist, Opt. Lett. 31, 3040 (2006)

    Article  ADS  Google Scholar 

  14. 14.

    D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, P. De Natale, Opt. Lett. 27, 1256 (2002)

    Article  ADS  Google Scholar 

  15. 15.

    E. Normand, M. McCulloch, G. Duxbury, N. Langford, Opt. Lett. 28, 16 (2003)

    Article  ADS  Google Scholar 

  16. 16.

    T. Beyer, M. Braun, A. Lambrecht, J. Appl. Phys. 93, 3158 (2003)

    Article  ADS  Google Scholar 

  17. 17.

    G. Duxbury, N. Langford, M.T. McCulloch, S. Wright, Chem. Soc. Rev. 34, 921 (2005)

    Article  Google Scholar 

  18. 18.

    M.T. McCulloch, E.L. Normand, N. Langford, G. Duxbury, D.A. Newnham, J. Opt. Soc. Am. B 20, 1761 (2003)

    Article  ADS  Google Scholar 

  19. 19.

    V. Zéninari, L. Joly, B. Grouiez, B. Parvitte, A. Barbe, J. Quantum Spectrosc. Radiat. Transf. 105, 312 (2007)

    Google Scholar 

  20. 20.

    J.M. Flaud, A. Perrin, L.M. Salah, W.J. Lafferty, G. Guelachvili, J. Mol. Spectrosc. 160, 272 (1993)

    Article  ADS  Google Scholar 

  21. 21.

    P.M. Chu, S.J. Wetzel, W.J. Lafferty, A. Perrin, J.M. Flaud, P. Arcas, G. Guelachvili, J. Mol. Spectrosc. 189, 55 (1998)

    Article  ADS  Google Scholar 

  22. 22.

    V. Zéninari, B. Parvitte, L. Joly, T. Le Barbu, N. Amarouche, G. Durry, Appl. Phys. B 85, 265 (2006)

    Article  ADS  Google Scholar 

  23. 23.

    L. Joly, V. Zéninari, B. Parvitte, D. Weidmann, D. Courtois, Y. Bonetti, T. Aellen, M. Beck, J. Faist, D. Hofstetter, Appl. Phys. B 77, 703 (2003)

    Article  ADS  Google Scholar 

  24. 24.

    B. Sumpf, J. Mol. Struct. 599, 39 (2001)

    Article  ADS  Google Scholar 

  25. 25.

    G.D.T. Tejwani, J. Chem. Phys. 57, 4676 (1972)

    Article  ADS  Google Scholar 

  26. 26.

    M.T. McCulloch, G. Duxbury, N. Langford, Mol. Phys. 104, 2767 (2006)

    Article  ADS  Google Scholar 

  27. 27.

    G. Duxbury, N. Langford, M.T. McCulloch, S. Wright, Mol. Phys. 105, 741 (2007)

    Article  ADS  Google Scholar 

  28. 28.

    J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Appl. Phys. B 85, 235 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Zeninari.

Additional information

PACS

07.57.Ty; 42.55.Px; 42.62.Fi

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grouiez, B., Parvitte, B., Joly, L. et al. Comparison of a quantum cascade laser used in both cw and pulsed modes. Application to the study of SO2 lines around 9 μm. Appl. Phys. B 90, 177–186 (2008). https://doi.org/10.1007/s00340-007-2857-6

Download citation

Keywords

  • Pulse Mode
  • Vibrational Band
  • Calculated Spectrum
  • Quantum Cascade Laser
  • Recorded Spectrum