Skip to main content
Log in

Thermoreflectance and photodeflection combined for microscopic characterization of metallic surfaces

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A non-contact technique is presented that provides information on thermal diffusivity at the cubic micron scale in metal surfaces. It relies on the simultaneous fit of the frequency dependence of two mechanisms that appear when heating the surface of the sample with a modulated laser beam, the thermoreflectance (change in reflectivity with temperature) and photodeflection (the deflection of the beam due to the surface deformation). A complete analytical model is presented that takes both mechanisms into account, showing that the relative importance of both mechanisms depends strongly on the material under test and varies in several orders of magnitude between different metallic alloys. By filtering the reflected signal with an adjustable knife edge, the photodeflection signal can be enhanced. It is also shown how the signal arising from each mechanism depends strongly on the relative position of the pump and probe beams. A characteristic modulating frequency appears at which a drop in the signal with frequency is observed that is coincident for both mechanisms. From the determination of the characteristic frequency, the local heat diffusivity can be determined as it is shown for the case of an AISI304 stainless steel sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rosencwaig, J. Opsal, W.L. Smith, D.L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985)

    Article  ADS  Google Scholar 

  2. L. Bincheng, J.P. Roger, L. Pottier, D. Fournier, J. Appl. Phys. 86, 5314 (1999)

    Article  ADS  Google Scholar 

  3. D. Founier, MRS Bull. 26, 465 (2001)

    Google Scholar 

  4. D. Rochais, H. Le Houëdec, F. Enguehard, J. Jumel, F. Lepoutre, J. Phys. D Appl. Phys. 38, 1498 (2005)

  5. A.M. Mansanares, T. Velinov, Z. Bozoki, D. Fournier, A.C. Boccara, J. Appl. Phys. 75, 3344 (1994)

    Article  ADS  Google Scholar 

  6. A. Rosencwaig, J. Opsal, D.L. Willenborg, Appl. Phys. Lett. 43, 166 (1983)

    Article  ADS  Google Scholar 

  7. J. Opsal, A. Rosencwaig, D.L. Willenborg, Appl. Opt. 22, 3169 (1983)

    Article  ADS  Google Scholar 

  8. W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980)

    Article  ADS  Google Scholar 

  9. S.M. Landi, O.E. Martínez, J. Appl. Phys. 88, 4840 (2000)

    Article  ADS  Google Scholar 

  10. F. Cernuschi, P.G. Bison, A. Figari, S. Marinetti E. Grinzato, Int. J. Thermophys. 25, 439 (2004). Proc. Fifteenth Symposium on Thermophysical Properties, Part I

    Article  Google Scholar 

  11. www.goodfellow.com

  12. www.matweb.com

  13. H.Y. Tong, B.Z. Ding, J.T. Wang, K. Lu, J. Appl. Phys. 72, 5124 (1992)

    Article  ADS  Google Scholar 

  14. G.V. Chester, A. Thellung, Proc. Phys. Soc. 77, 1005 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.E. Martínez.

Additional information

PACS

78.20.Nv; 65.40.-b; 72.15.Eb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, O., Balzarotti, F. & Mingolo, N. Thermoreflectance and photodeflection combined for microscopic characterization of metallic surfaces. Appl. Phys. B 90, 69–77 (2008). https://doi.org/10.1007/s00340-007-2847-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2847-8

Keywords

Navigation