Advertisement

Applied Physics B

, Volume 89, Issue 2–3, pp 177–180 | Cite as

Compact and robust laser system for rubidium laser cooling based on the frequency doubling of a fiber bench at 1560 nm

  • F. Lienhart
  • S. Boussen
  • O. Carraz
  • N. Zahzam
  • Y. BidelEmail author
  • A. Bresson
Article

Abstract

We propose a new compact and reliable laser system for rubidium laser cooling in onboard experiments like atomic clocks or atomic inertial sensors. The system is based on the frequency doubling of a telecom fiber bench at 1560 nm. Fiber components at 1560 nm allow us to generate the repumping laser and to control dynamically the power and the frequency of the 780 nm laser. With this laser system, we obtain a magneto-optical trap of 85Rb even in the presence of mechanical vibrations and strong thermal variations (12 °C in 30 min).

Keywords

Laser System Rubidium Frequency Doubling Laser Cool Atomic Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Laurent, M. Abgrall, Ch. Jentsch, P. Lemonde, G. Santarelli, A. Clairon, I. Makalmovic, S. Bize, Ch. Salomon, D. Blonde, J.F. Vega, O. Grosjean, F. Picard, M. Saccoccio, M. Chaubet, N. Ladietto, L. Guillet, I. Zenone, Ch. Delaroche, Ch. Sirmain, Appl. Phys. B 84, 683 (2006)CrossRefADSGoogle Scholar
  2. 2.
    A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25 (2001)CrossRefADSGoogle Scholar
  3. 3.
    T.L. Gustavson, P. Bouyer, M.A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997)CrossRefADSGoogle Scholar
  4. 4.
    N. Yu, J.M. Kohel, J.R. Kellogg, L. Maleki, Appl. Phys. B 84, 647 (2006)CrossRefADSGoogle Scholar
  5. 5.
    A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M.A. Arbore, M.M. Fejer, Appl. Opt. 37, 6410 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    J. Dingjan, B. Darquie, J. Beugnon, M.P.A. Jones, S. Bergamini, G. Messin, A. Browaeys, P. Grangier, Appl. Phys. B 82, 47 (2006)CrossRefADSGoogle Scholar
  7. 7.
    R.J. Thompson, M. Tu, D.C. Aveline, N. Lundblad, L. Maleki, Opt. Express 11, 1709 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, K. Nassau, Appl. Phys. Lett. 9, 72 (1966)CrossRefADSGoogle Scholar
  9. 9.
    S. Peil, S. Crane, C.R. Ekstrom, in Proc. 2003 IEEE Int. Frequency Control Symp. and PDA Exhib. (2003), pp. 159–161Google Scholar
  10. 10.
    D.A. Steck, Rubidium 87 D Line Data, http://steck.us/alkalidataGoogle Scholar
  11. 11.
    C. Salomon, J. Dalibard, W.D. Phillips, A. Clairon, S. Guellati, Europhys. Lett. 12, 683 (1990)CrossRefADSGoogle Scholar
  12. 12.
    P. Lett, R. Watts, C. Westbrook, W. Phillips, P. Gould, H. Metcalf, Phys. Rev. Lett. 61, 169 (1988)CrossRefADSGoogle Scholar
  13. 13.
    R.A. Nyman, G. Varoquaux, F. Lienhart, D. Chambon, S. Boussen, J.-F. Clément, T. Müller, G. Santarelli, F. Pereira Dos Santos, A. Clairon, A. Bresson, A. Landragin, P. Bouyer, Appl. Phys. B 84, 673 (2006)CrossRefADSGoogle Scholar
  14. 14.
    M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • F. Lienhart
    • 1
  • S. Boussen
    • 2
  • O. Carraz
    • 1
  • N. Zahzam
    • 1
  • Y. Bidel
    • 1
    Email author
  • A. Bresson
    • 1
  1. 1.ONERA, DMPHPalaiseauFrance
  2. 2.Faculté de Médecine de Lyon Nord, Féderation de Médecine Nucléaire et RadiopharmacieLyonFrance

Personalised recommendations