Skip to main content
Log in

Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Pérot spectrometer and by conventional atomic absorption

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A see-through hollow cathode lamp, or galvatron, is investigated. A novel method is presented for the measurement of an atomic absorption profile using a quasi-continuum source created by the combination of two line sources and a high-resolution Fabry–Pérot interferometer coupled to a spectrometer. Number densities are calculated from the resulting absorption profiles by the peak absorption coefficient relationship and compare well with results obtained from high-resolution emission measurements. Number densities are also determined for the lead 3 P 1 metastable state and thallium 2 P 1/2 o ground state by conventional atomic absorption. A hollow cathode lamp is used as an emission source and is set at a relatively low current to approximate as a line source relative to the galvatron. Due to the relative line widths of the source and absorber, only the lead metastable state results compare to results obtained by saturated fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.I. Matveev, J. Appl. Spectrosc. (USSR) 46, 217 (1987)

    Article  ADS  Google Scholar 

  2. R.J. Krupa, G.L. Long, J.D. Winefordner, Spectrochim. Acta B 40, 1485 (1985)

    Article  ADS  Google Scholar 

  3. T. Okada, H. Andou, Y. Moriyama, M. Maeda, Opt. Lett. 14, 987 (1989)

    ADS  Google Scholar 

  4. S.H. Bloom, E. Korevar, M. Rivers, C.S. Liu, Opt. Lett. 15, 294 (1990)

    ADS  Google Scholar 

  5. J.P. Temirov, N.V. Chigarev, O.I. Matveev, N. Omenetto, B.W. Smith, J.D. Winefordner, Spectrochim. Acta B 59, 677 (2004)

    Article  ADS  Google Scholar 

  6. D. Pappas, N.C. Pixley, O.I. Matveev, B.W. Smith, J.D. Winefordner, Opt. Commun. 191, 263 (2001)

    Article  ADS  Google Scholar 

  7. B.W. Smith, P.B. Farnsworth, J.D. Winefordner, N. Omenetto, Opt. Lett. 15, 823 (1990)

    Article  ADS  Google Scholar 

  8. G.L. Long, J.D. Winefordner, Appl. Spectrosc. 38, 563 (1984)

    Article  ADS  Google Scholar 

  9. M.S. Cresser, P.N. Keliher, C.C. Wohlers, Spectry Lett. 3, 179 (1970)

    Article  ADS  Google Scholar 

  10. M.S. Cresser, P.N. Keliher, C.C. Wohlers, Anal. Chem. 45, 111 (1973)

    Article  Google Scholar 

  11. G.F. Kirkbright, O.E. Troccoli, Spectrochim. Acta B 28, 33 (1973)

    Article  ADS  Google Scholar 

  12. H. C Wagenaar, C.J. Pickford, L. De Galan, Spectrochim. Acta B 29, 211 (1974)

    Article  ADS  Google Scholar 

  13. A.S. Bazov, A.V. Zherebenko, J. Appl. Spectrosc. (USSR) 12, 403 (1970)

    Google Scholar 

  14. T.L. Correl, Ph.D. Dissertation, University of Florida, (2004)

  15. J.D. Ingle Jr., S.R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988)

    Google Scholar 

  16. N. Taylor, N. Omenetto, B.W. Smith, J.D. Winefordner, DOI: 10.1007/s00340-007-2752-1

  17. V. Horvatic, T.L. Correll, N. Omenetto, C. Vadla, J.D. Winefordner, Spectrochim. Acta B 61, 1260 (2006)

    Article  ADS  Google Scholar 

  18. G. Magerl, B.P. Oehry, W. Ehrlich-Schupita, Study of Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik Technische Universität Wien, Vienna Austria, July 1991)

  19. N. Taylor, N. Omenetto, B.W. Smith, J.D. Winefordner, (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.D. Winefordner.

Additional information

PACS

52.25.Tx; 32.70.Jz; 07.60.Ly

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, N., Omenetto, N., Smith, B. et al. Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Pérot spectrometer and by conventional atomic absorption. Appl. Phys. B 89, 99–106 (2007). https://doi.org/10.1007/s00340-007-2751-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2751-2

Keywords

Navigation