Skip to main content
Log in

Effect of interactive damping on vibration sensitivities of a scanning near-field optical microscope probe

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The effect of interactive damping on the sensitivity of flexural and axial vibration modes of scanning near-field optical microscope (SNOM) with a tapered optical fiber probe has been analyzed. The interaction of the SNOM probe with a sample surface is modeled by a combination of a spring and a dashpot in the flexural direction and a similar combination in the axial direction. An approximate form for the sensitivities of both modes was derived by using the Rayleigh–Ritz method. The results show that the interactive damping will decrease the sensitivities of both flexural and axial vibration modes when the contact stiffness is low. The more the damping effect, the lower the sensitivities are. In addition, when the contact stiffness was low, the flexural sensitivity of the tapered probe slightly increased as the tapered angle decreased. However, the axial sensitivity apparently decreased as the tapered angle decreased. When the contact stiffness became higher, the sensitivities of both flexural and axial vibration modes increased as the tapered angle increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dereux, C. Girard, C. Chicanne, F. G Colas, T. David, E. Bourillot, Y. Lacroute, J. Weeber, Nanotechnology 14, 935 (2003)

    Article  ADS  Google Scholar 

  2. C. Haumann, Ch. Pelargus, H.G. Frey, R. Ros, D. Anselmetti, J. Toquant, D.W. Pohl, Rev. Sci. Instrum. 76, 033704 (2005)

    Google Scholar 

  3. C. Girard, E. Dujardin, J. Opt. A Pure Appl. Opt. 8, S73 (2006)

    Article  ADS  Google Scholar 

  4. J.H. Kim, K.B. Song, Micron 38, 409 (2007)

    Article  Google Scholar 

  5. A.A. Tseng, Opt. Laser Technol. 39, 514 (2007)

    Article  ADS  Google Scholar 

  6. G. Kaupp, A. Herrmann, J. Schmeyers, J. Boy, J. Photochem. Photobiol. A 139, 93 (2001)

    Article  Google Scholar 

  7. L. Aigouy, B. Samson, G. Julié, V. Mathet, N. Lequeux, C. N. Allen, H. Diaf, B. Dubertret, Rev. Sci. Instrum. 77, 063702 (2006)

    Article  ADS  Google Scholar 

  8. A. Drezet, A. Hohenau, J.R. Krenn, M. Brun, S. Huant, Micron 38, 427 (2007)

    Article  Google Scholar 

  9. V.N. Konopsky, K.E. Kouyanov, N.N. Novikova, Ultramicroscopy 88, 127 (2001)

    Article  Google Scholar 

  10. D.A. Lapshin, V.S. Letokhov, G.T. Shubeita, S.K. Sekatskii, G. Dietler, Appl. Phys. Lett. 81, 1503 (2002)

    Article  ADS  Google Scholar 

  11. J.M. Kim, T. Ohtani, H. Muramatsu, Surf. Sci. 549, 273 (2004)

    Article  ADS  Google Scholar 

  12. K. Taniguchi, Y. Kanemitsu, Japan. J. Appl. Phys. 44, 575 (2005)

    Article  ADS  Google Scholar 

  13. H. Heinzelmann, D.W. Pohl, Appl. Phys. A 59, 89 (1994)

    Article  ADS  Google Scholar 

  14. T.H. Fang, W.J. Chang, Opt. Laser Technol. 35, 267 (2003)

    Article  ADS  Google Scholar 

  15. W.J. Chang, T.H. Fang, H.L. Lee, Y.C. Yang, Ultramicroscopy 102, 85 (2005)

    Article  Google Scholar 

  16. P.N. Minh, T. Ono, M. Esashi, Sens. Actuators A 80, 163 (2000)

    Article  Google Scholar 

  17. A. Ambrosio, E. Cefalì, S. Spadaro, S. Patanè, M. Allegrini, D. Albert, E. Oesterschulze, Appl. Phys. Lett. 89, 163108 (2006)

    Article  ADS  Google Scholar 

  18. L. Meirovitch, Analytical Methods in Vibrations (Macmillan, New York, 1967)

    MATH  Google Scholar 

  19. W. Weaver Jr., S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, 5th edn. (Wiley, New York, 1990)

  20. E. Newland, J. Sound Vib. 112, 69 (1987)

    Article  ADS  Google Scholar 

  21. B. Cretin, P. Vairac, Appl. Phys. A 66, S235 (1998)

    Article  ADS  Google Scholar 

  22. J. Radojewski, P. Grabiec, Mater. Sci. 21, 319 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-L. Lee.

Additional information

PACS

68.35.Ja; 07.79.Fc; 61.16.Ch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HL., Chen, TF. Effect of interactive damping on vibration sensitivities of a scanning near-field optical microscope probe. Appl. Phys. B 88, 179–184 (2007). https://doi.org/10.1007/s00340-007-2720-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2720-9

Keywords

Navigation