Skip to main content

Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: application to the detection of methane and nitrous oxide

Abstract

Room temperature (RT) quantum cascade lasers (QCL) are now available even in continuous wave (cw) mode, which is very promising for in situ gas detectors. Ambient air monitoring requires high sensitivity with robust and simple apparatus. For that purpose, a compact photoacoustic setup was combined with two cw QCLs to measure ambient methane and nitrous oxide in the 8 μm range. The first laser had already been used to calibrate the sensitivity of the photoacoustic cell and a detection limit of 3 ppb of CH4 with a 1s integration time per point was demonstrated. In situ monitoring with this laser was difficult because of liquid nitrogen cooling. The second laser is a new RT cw QCL with lower power, which enabled one to reach a detection limit of 34 ppb of methane in flow. The loss in sensitivity is mainly due to the weaker power as photoacoustic signal is proportional to light power. The calibration for methane detection leads to an estimated detection limit of 14 ppb for N2O flux measurements. Various ways of modulation have been tested. The possibility to monitor ambient air CH4 and N2O at ground level with this PA spectrometer was demonstrated in flux with these QCLs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Grossel, V. Zeninari, L. Joly, B. Parvitte, D. Courtois, G. Durry, Spectrochim. Acta A 63, 1021 (2006)

    Article  Google Scholar 

  2. 2.

    A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 24, 1762 (1999)

    ADS  Google Scholar 

  3. 3.

    K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Opt. Lett. 23, 219 (1998)

    ADS  Google Scholar 

  4. 4.

    A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 39, 4425 (2000)

    ADS  Article  Google Scholar 

  5. 5.

    D.N. Nelson, B. McManus, S. Urbanski, S. Herndon, M.S. Zahniser, Spectrochim. Acta A 60, 3325 (2004)

    Article  Google Scholar 

  6. 6.

    C.R. Webster, G.J. Flesch, D.C. Scott, J.E. Swanson, R.D. May, W.S. Woodward, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Appl. Opt. 40, 321 (2001)

    ADS  Google Scholar 

  7. 7.

    C.R. Webster, R.D. May, C.A. Timble, R.G. Chave, J. Kendall, Appl. Opt. 33, 454 (1994)

    ADS  Google Scholar 

  8. 8.

    F. Keppler, J.G. Hamilton, M. Brass, T. Rockmann, Nature 439, 187 (2006)

    Article  ADS  Google Scholar 

  9. 9.

    P. Werle, R. Kormann, Appl. Opt. 40, 846 (2001)

    ADS  Google Scholar 

  10. 10.

    R. Kormann, H. Muller, P. Werle, Atmosph. Environ. 35, 2533 (2001)

    Article  Google Scholar 

  11. 11.

    P. Boeckx, O. Van Cleemput, Nutrient Cycl. Agroecosyst. 60, 35 (2001)

    Google Scholar 

  12. 12.

    D.G. Lancaster, D. Richter, R.F. Curl, F.K. Tittel, L. Goldberg, J. Koplow, Opt. Lett. 24, 1744 (1999)

    ADS  Google Scholar 

  13. 13.

    D.G. Lancaster, R. Weidner, D. Richter, F.K. Tittel, J. Limpert, Opt. Commun. 175, 461 (2000)

    Article  ADS  Google Scholar 

  14. 14.

    A.A. Kosterev, Y.A. Bakhirkin, F.K. Tittel, Appl. Phys. B 80, 133 (2005)

    Article  ADS  Google Scholar 

  15. 15.

    M. Szakall, H. Huszar, Z. Bozoki, G. Szabo, Infrared Phys. Technol. 48, 192 (2006)

    Article  ADS  Google Scholar 

  16. 16.

    L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

  17. 17.

    S. Schilt, L. Thévenaz, Infrared Phys. Technol. 48, 154 (2006)

    Google Scholar 

  18. 18.

    S. Schilt, J.P. Besson, L. Thévenaz, Appl. Phys. B 82, 319 (2006)

    Article  ADS  Google Scholar 

  19. 19.

    F.G.C. Bijnen, F.J.M. Harren, J.H.P. Hackstein, J. Reuss, Appl. Opt. 35, 5357 (1996)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Zéninari.

Additional information

PACS

07.88; 92.60.Sz

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grossel, A., Zéninari, V., Parvitte, B. et al. Optimization of a compact photoacoustic quantum cascade laser spectrometer for atmospheric flux measurements: application to the detection of methane and nitrous oxide. Appl. Phys. B 88, 483–492 (2007). https://doi.org/10.1007/s00340-007-2719-2

Download citation

Keywords

  • Nitrous Oxide
  • Methane Concentration
  • Quantum Cascade Laser
  • Photoacoustic Signal
  • Multipass Cell