Skip to main content
Log in

Non-tilting out-of-plane mode high-Q mechanical silicon oscillator as a moving cavity mirror

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A very sensitive optomechanical sensor to detect femtometer-level displacements in the position of one of the cavity mirrors in a Fabry–Pérot interferometer was constructed and characterized. We use a high-reflectivity coated, non-tilting out-of-plane mode high-Q mechanical silicon oscillator as a rear mirror in the Fabry–Pérot interferometer. The benefit of our novel oscillator, if compared to traditional torsional, flexural and many bulk acoustic mode oscillators, is that the action of weak forces is observed to cause only pure linear translation of the moving mirror without any tilting or deformation of the mirror surface. This non-tilting behavior allows, in principle, more precise optical mode stabilization, use of very short optical cavities and studies of short-range interactions between parallel surfaces. The resonance frequency and Q value of the high-reflectivity coated silicon oscillator are f0=27.5 kHz and Q=19000 at low pressure (p=0.1 mbar) and at room temperature. The finesse of the optical cavity is \(\mathcal{F}=2600\). The sensitivity of the displacement measurement is Δxmin=5 fm with a 1 Hz bandwidth. The prospects of reaching the standard quantum limit in an interferometric displacement measurement using a macroscopic oscillator are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Müller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, N.F. de Rooij, Phys. Rev. A 59, 1038 (1999)

    Article  ADS  Google Scholar 

  2. Y. Hadjar, P.F. Cohadon, C.G. Aminoff, M. Pinard, A. Heidmann, Europhys. Lett. 47, 545 (1999)

    Article  ADS  Google Scholar 

  3. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, Phys. Rev. Lett. 97, 133601 (2006)

    Article  ADS  Google Scholar 

  4. A. Heidmann, Y. Hadjar, M. Pinard, Appl. Phys. B 64, 173 (1997)

    Article  ADS  Google Scholar 

  5. C.M. Caves, Phys. Rev. Lett. 45, 75 (1980)

    Article  ADS  Google Scholar 

  6. Y. Pang, J.-P. Richard, Appl. Opt. 34, 4982 (1995)

    Article  ADS  Google Scholar 

  7. G.J. Milburn, K. Jacobs, D.F. Walls, Phys. Rev. A 50, 5256 (1994)

    Article  ADS  Google Scholar 

  8. P.F. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  9. D. Vitali, S. Mancini, L. Ribichini, P. Tombesi, J. Opt. Soc. Am. B 20, 1054 (2003)

    ADS  Google Scholar 

  10. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Phys. Rev. Lett. 97, 243905 (2006)

    Article  ADS  Google Scholar 

  11. L. Haiberger, D. Jäger, S. Schiller, Rev. Sci. Instrum. 76, 045106 (2005)

    Article  ADS  Google Scholar 

  12. O. Hahtela, I. Tittonen, Appl. Phys. B 81, 589 (2005)

    Article  ADS  Google Scholar 

  13. V. Giovannetti, S. Mancini, P. Tombesi, Europhys. Lett. 54, 559 (2001)

    Article  ADS  Google Scholar 

  14. S. Mancini, D. Vitali, V. Giovannetti, P. Tombesi, Eur. Phys. J. D 22, 417 (2003)

    ADS  Google Scholar 

  15. V.B. Braginsky, F. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  16. C. Brif, A. Mann, J. Opt. B Quantum Semiclass. Opt. 2, 53 (2000)

    Google Scholar 

  17. A. Heidmann, J.-M. Courty, M. Pinard, J. Lebars, J. Opt. B Quantum Semiclass. Opt. 6, S684 (2004)

  18. D. Rugar, P. Grütter, Phys. Rev. Lett. 67, 699 (1991)

    Article  ADS  Google Scholar 

  19. T. Briant, P.F. Cohadon, M. Pinard, A. Heidmann, Eur. Phys. J. D 22, 131 (2003)

    Article  ADS  Google Scholar 

  20. O. Hahtela, N. Chekurov, I. Tittonen, J. Micromech. Microeng. 15, 1848 (2005)

    Article  ADS  Google Scholar 

  21. K. Wang, A.-C. Wong, C.T.-C. Nguyen, J. Microelectromech. Syst. 9, 347 (2000)

    Article  Google Scholar 

  22. O. Hahtela, K. Nera, I. Tittonen, J. Opt. A Pure Appl. Opt. 6, S115 (2004)

    Article  ADS  Google Scholar 

  23. S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997)

    Article  ADS  Google Scholar 

  24. V. Petrov, M. Petrov, V. Bryksin, J. Petter, T. Tschudi, Opt. Lett. 31, 3167 (2006)

    Article  ADS  Google Scholar 

  25. R.A. Buser, N.F. de Rooij, Sens. Actuators A 21, 323 (1990)

    Article  Google Scholar 

  26. R. Sandberg, K. Molhave, A. Boisen, W. Svendsen, J. Micromech. Microeng. 15, 2249 (2005)

    Article  ADS  Google Scholar 

  27. O. Hahtela, P. Sievilä, N. Chekurov, I. Tittonen, J. Micromech. Microeng. 17, 737 (2007)

    Article  ADS  Google Scholar 

  28. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  29. P.R. Saulson, Phys. Rev. D 42, 2437 (1990)

    Article  ADS  Google Scholar 

  30. G. Meyer, N.M. Amer, Appl. Phys. Lett. 53, 1045 (1988)

    Article  ADS  Google Scholar 

  31. R.G. Knobel, A.N. Cleland, Appl. Phys. Lett. 81, 2258 (2002)

    Article  ADS  Google Scholar 

  32. R.G. Knobel, A.N. Cleland, Nature 424, 291 (2003)

    Article  ADS  Google Scholar 

  33. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Nature 443, 193 (2006)

    Article  ADS  Google Scholar 

  34. J.V. Knuuttila, P.T. Tikka, M.M. Salomaa, Opt. Lett. 25, 613 (2000)

    ADS  Google Scholar 

  35. D. Rugar, H.J. Mamin, P. Guethner, Appl. Phys. Lett. 55, 2588 (1989)

    Article  ADS  Google Scholar 

  36. H.J. Mamin, D. Rugar, Appl. Phys. Lett. 79, 3358 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hahtela.

Additional information

PACS

78.70.-g; 07.10.Cm; 07.60.Ly

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahtela, O., Tittonen, I. Non-tilting out-of-plane mode high-Q mechanical silicon oscillator as a moving cavity mirror. Appl. Phys. B 88, 417–423 (2007). https://doi.org/10.1007/s00340-007-2694-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2694-7

Keywords

Navigation