Skip to main content
Log in

Effects of sidelobes of focused flat-topped laser beams on vacuum electron acceleration

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Using three-dimensional test particle simulations, we investigated electrons accelerated by a focused flat-top laser beam at different intensities and flatness levels of the beam profile before focusing in vacuum. The results show that the presence of sidelobes around the main focal spot of the focused flat-top laser beam influences the optimum (as far as electron acceleration is concerned) initial momentum (and incident angle) of electrons for acceleration. The difference of initial conditions between laser beams with and without sidelobes becomes evident when the laser field is strong enough (a0>10, corresponding to intensities I>1×1020 W/cm2 for the laser wavelength λ=1 μm, where a0 is a dimensionless parameter measuring laser intensity). The difference becomes more pronounced at increasing a0. Because of the presence of sidelobes, there exist three typical CAS (capture and acceleration scenario) channels when a0≥30 (corresponding to I>1×1021 W/cm2 for λ=1 μm). The energy spread of the outgoing electrons is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, H. Kiriyama, Opt. Lett. 28, 1594 (2003)

    Article  ADS  Google Scholar 

  2. S. Witte, R.T. Zinkstok, W. Hogervorst, K.S.E. Eikema, Opt. Express 13, 4903 (2005)

    Article  ADS  Google Scholar 

  3. S.-W. Bahk, P. Rousseau, T.A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G.A. Mourou, V. Yanovsky, Opt. Lett. 29, 2837 (2004)

    Article  ADS  Google Scholar 

  4. L.Q. Liu, H.S. Peng, K.N. Zhou, X.D. Wang, X. Wang, X.M. Zhang, Q.H. Zhu, X.J. Huang, X.F. Wei, R. Huan, Proc. SPIE 5856, 646 (2005)

    Article  ADS  Google Scholar 

  5. T. Tajima, G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002)

    Article  ADS  Google Scholar 

  6. W.P. Leemans, B. Nagler, A.J. Gonsalves, Cs. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, Nat. Phys. 2, 696 (2006)

  7. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  8. C.G.R. Geddes, Cs. Tóth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)

  9. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  10. Y.I. Salamin, C.H. Keitel, Phys. Rev. Lett. 88, 095005 (2002)

    Article  ADS  Google Scholar 

  11. Y.I. Salamin, C.H. Keitel, Appl. Phys. Lett. 77, 1082 (2000)

    Article  ADS  Google Scholar 

  12. Y.I. Salamin, Phys. Lett. A 335, 289 (2005)

    Article  MATH  ADS  Google Scholar 

  13. W. Yu, V. Bychenkov, Y. Sentoku, M.Y. Yu, Z.M. Sheng, K. Mima, Phys. Rev. Lett. 85, 570 (2000)

    Article  ADS  Google Scholar 

  14. W. Yu, Z.Y. Chen, M.Y. Yu, L.J. Qian, P.X. Lu, R.X. Li, K. Koyama, Phys. Rev. E 66, 036406 (2002)

    Article  ADS  Google Scholar 

  15. H. Liu, X.T. He, H. Hora, Appl. Phys. B 82, 93 (2006)

    Article  ADS  Google Scholar 

  16. C. Varin, M. Piché, Appl. Phys. B 74, 83 (2002)

    Article  ADS  Google Scholar 

  17. D. Li, K. Imasaki, Appl. Phys. Lett. 86, 031110 (2005)

    Article  ADS  Google Scholar 

  18. K.P. Singh, Appl. Phys. Lett. 87, 254102 (2005)

    Article  ADS  Google Scholar 

  19. Q. Kong, S. Miyazaki, S. Kawata, K. Miyauchi, K. Sakai, Y.K. Ho, K. Nakajima, N. Miyanaga, J. Limpouch, A.A. Andreev, Phys. Rev. E 69, 056502 (2004)

    Article  ADS  Google Scholar 

  20. D.N. Gupta, H. Suk, Phys. Plasmas 13, 013105 (2006)

    Article  ADS  Google Scholar 

  21. P.X. Wang, Y.K. Ho, X.Q. Yuan, Q. Kong, N. Cao, A.M. Sessler, E. Esarey, Y. Nishida, Appl. Phys. Lett. 78, 2253 (2001)

    Article  ADS  Google Scholar 

  22. J. Pang, Y.K. Ho, N. Cao, L. Shao, Y.J. Xie, Z. Chen, S.Y. Zhang, Appl. Phys. B 76, 617 (2003)

    ADS  Google Scholar 

  23. S. De Silvestri, P. Laporta, V. Magni, O. Svelto, B. Majocchi, Opt. Lett. 13, 201 (1988)

    ADS  Google Scholar 

  24. F G. Patterson, R. Gonzales, M.D. Perry, Opt. Lett. 16, 1107 (1991)

    ADS  Google Scholar 

  25. W. Wang, P.X. Wang, Y.K. Ho, Q. Kong, Z. Chen, Y. Gu, S.J. Wang, Europhys. Lett. 73, 211 (2006)

    Article  ADS  Google Scholar 

  26. F. Gori, Opt. Commun. 107, 335 (1994)

    Article  ADS  Google Scholar 

  27. V. Bagini, R. Borghi, F. Gori, A.M. Pacileo, M. Santarsiero, D. Ambrosini, G. Schirripa, J. Opt. Soc. Am. A 13, 1385 (1996)

    Article  ADS  Google Scholar 

  28. M. Santarsiero, D. Aiello, R. Borghi, S. Vicalvi, J. Mod. Opt. 44, 633 (1997)

    ADS  Google Scholar 

  29. P.X. Wang, J.X. Wang, Appl. Phys. Lett. 81, 4473 (2002)

    Article  ADS  Google Scholar 

  30. Y.K. Ho, J.X. Wang, L. Feng, W. Scheid, H. Hora, Phys. Lett. A 220, 189 (1996)

    Article  ADS  Google Scholar 

  31. T.W.B. Kibble, Phys. Rev. Lett. 23, 1054 (1966)

    Article  ADS  Google Scholar 

  32. T.W.B. Kibble, Phys. Rev. 150, 1060 (1966)

    Article  ADS  Google Scholar 

  33. F.V. Hartemann, S.N. Fochs, G.P. Le Sage, N.C. Luhmann, J.G. Woodworth, M.D. Perry, Y.J. Chen, A.K. Kerman, Phys. Rev. E 51, 4833 (1995)

    Article  ADS  Google Scholar 

  34. F.V. Hartemann, A.L. Troha, N.C. Luhmann, Z. Toffano, Phys. Rev. E 54, 2956 (1996)

    Article  ADS  Google Scholar 

  35. M.V. Fedorov, S.P. Goreslavsky, V.S. Letokhov, Phys. Rev. E 55, 1015 (1996)

    Article  ADS  Google Scholar 

  36. Y.I. Salamin, F.H.M. Faisal, Phys. Rev. A 55, 3678 (1997)

    Article  ADS  Google Scholar 

  37. F.V. Hartemann, J.R. Van Meter, A.L. Troha, E.C. Landahl, N.C. Luhmann, H.A. Baldis, A. Gupta, A.K. Kerman, Phys. Rev. E 58, 5001 (1998)

    Article  ADS  Google Scholar 

  38. F.V. Hartemann, A.K. Kerman, Phys. Rev. Lett. 76, 624 (2001)

    Article  ADS  Google Scholar 

  39. Z. Chen, Y.K. Ho, Y.J. Xie, S.Y. Zhang, Z. Yan, J.J. Xu, Y.Z. Lin, J.F. Hua, Appl. Phys. Lett. 85, 2475 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.X. Wang.

Additional information

PACS

41.75.Jv; 42.60.Jf; 42.25.Fx

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, P., Ho, Y. et al. Effects of sidelobes of focused flat-topped laser beams on vacuum electron acceleration. Appl. Phys. B 88, 273–279 (2007). https://doi.org/10.1007/s00340-007-2673-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2673-z

Keywords

Navigation