Skip to main content
Log in

Measurement of bimodal size distribution of nanoparticles by using the spatial distribution of laser-induced plasma

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced breakdown detection was performed to monitor the nanoparticles in an aqueous solution by means of a two-dimensional optical imaging method. To verify the relationship between the particle size and the optical image of a laser-induced plasma, we investigated the characteristics of its spatial distribution corresponding to the number of breakdown events plotted on the laser beam propagating axis. It was found that, for particles smaller than 50 nm in diameter, the spatial distribution follows a single Gaussian curve. For particles in the diameter range from 100 to 1000 nm, however, the spatial distribution follows a sum of the multiple Gaussian curves with different peak positions and peak heights. We demonstrated that particles smaller than 20 nm in trace concentrations, which are mixed with larger particles in the diameter range of a few hundred nm, can be measured by a peak deconvolution of the spatial distribution of a laser-induced plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.I. Kim, Nucl. Eng. Technol. 38, 459 (2006)

    Google Scholar 

  2. J.I. Kim, Mater. Res. Soc. Bull. 19, 47 (1994)

    Google Scholar 

  3. J.I. Kim, P. Zeh, B. Delakowitz, Radiochim. Acta 58/59, 147 (1992)

    Google Scholar 

  4. T. Kitamori, K. Yokose, K. Suzuki, T. Sawada, Y. Gohshi, Japan. J. Appl. Phys. 27, L983 (1988)

    Article  ADS  Google Scholar 

  5. F.J. Scherbaum, R. Knopp, J.I. Kim, Appl. Phys. B 63, 299 (1996)

    ADS  Google Scholar 

  6. T. Kitamori, K. Yokose, M. Sakagami, T. Sawada, Japan. J. Appl. Phys. 28, 1195 (1989)

    Article  ADS  Google Scholar 

  7. T. Bundschuh, R. Knopp, J.I. Kim, Colloid Surf. A 177, 47 (2001)

    Article  Google Scholar 

  8. S. Izumida, K. Onishi, M. Saito, Japan. J. Appl. Phys. 37, 2039 (1998)

    Article  ADS  Google Scholar 

  9. M. Saito, S. Izumida, K. Onishi, J. Akazawa, Japan. J. Appl. Phys. 85, 6353 (1999)

    ADS  Google Scholar 

  10. H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y.-M. Hsueh, S. Izumi, Japan. J. Appl. Phys. 31, 1514 (1992)

    Article  ADS  Google Scholar 

  11. T. Ajiro, H. Fujimori, T. Matsui, S. Izumi, Japan. J. Appl. Phys. 31, 2760 (1992)

    Article  ADS  Google Scholar 

  12. T. Bundschuh, W. Hauser, J.I. Kim, R. Knopp, F.J. Scherbaum, Colloid Surf. A 180, 285 (2001)

    Article  Google Scholar 

  13. C. Walther, C. Bitea, W. Hauser, J.I. Kim, F.J. Scherbaum, Nucl. Instrum. Methods Phys. Res. B 195, 374 (2002)

    Article  ADS  Google Scholar 

  14. W. Hauser, H. Geckeis, J.I. Kim, Th. Fierz, Colloid Surf. A 203, 37 (2002)

    Google Scholar 

  15. E.C. Jung, J.-I. Yun, J.I. Kim, Y.J. Park, K.K. Park, T. Fanghänel, W.H. Kim, Appl. Phys. B 85, 625 (2006)

    Article  ADS  Google Scholar 

  16. H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, US-Patent 5316983 (1994)

  17. C. Walther, H.R. Cho, T. Fanghänel, Appl. Phys. Lett. 85, 6329 (2004)

    Article  ADS  Google Scholar 

  18. C. Walther, S. Büchner, M. Filella, V. Chanudet, J. Colloid Interf. Sci. 301, 532 (2006)

    Article  Google Scholar 

  19. M. Filella, J. Zhang, M.E. Newman, J. Buffle, Colloid Surf. A 120, 27 (1997)

    Article  Google Scholar 

  20. N.M. Thang, R. Knopp, H. Geckeis, J.I. Kim, H.P. Beck, Anal. Chem. 72, 1 (2000)

    Article  Google Scholar 

  21. N.M. Thang, H. Geckeis, J.I. Kim, H.P. Beck, Colloid Surf. A 181, 289 (2001)

    Article  Google Scholar 

  22. M. Bouby, H. Geckeis, T.N. Manh, J.-I. Yun, K. Dardenne, T. Schäfer, C. Walther, J.I. Kim, J. Chromatogr. A 1040, 97 (2004)

    Article  Google Scholar 

  23. M. Bouby, T.N. Manh, H. Geckeis, F. Scherbaum, J.I. Kim, Radiochim. Acta 90, 727 (2002)

    Article  Google Scholar 

  24. H. Geckeis, T.N. Manh, M. Bouby, J.I. Kim, Colloid Surf. A 217, 101 (2003)

    Article  Google Scholar 

  25. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, Kogakusha, LTD., 1965), chapt. 1

  26. M. Plaschke, J. Römer, R. Klenze, J.I. Kim, Colloid Surf. A 160, 269 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.C. Jung.

Additional information

PACS

42.62.Eh; 52.25.Rv; 52.70.Nc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, E., Yun, JI., Kim, J. et al. Measurement of bimodal size distribution of nanoparticles by using the spatial distribution of laser-induced plasma. Appl. Phys. B 87, 497–502 (2007). https://doi.org/10.1007/s00340-007-2626-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2626-6

Keywords

Navigation