Skip to main content
Log in

Construct a polarizing beam splitter by an anisotropic metamaterial slab

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a theoretical investigation of polarizing beam splitters based on an anisotropic metamaterial (AMM) slab. At the interface associated with a certain AMM, TE- and TM-polarized waves exhibit opposite amphoteric refraction characteristics, such that one polarized wave is positively refracted whereas the other is negatively refracted. The opposite amphoteric refractions result in a large birefringence in the AMM slab. By suitably using the large birefringence, we introduce a very simple and very efficient beam splitter to route the light. We show that the splitting angle and the splitting distance between TE- and TM-polarized beams is the function of anisotropic parameters, incident angle and slab thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, E. Wolf, Principles of Optics (Cambridge, New York, 1999)

    Google Scholar 

  2. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984)

    Google Scholar 

  3. K. Shiraishi, T. Sato, S. Kawakami, Appl. Phys. Lett. 58, 211 (1991)

    Article  ADS  Google Scholar 

  4. K. Shiraishi, T. Aoyagi, Opt. Lett. 23, 1232 (1998)

    ADS  Google Scholar 

  5. V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)

    Article  Google Scholar 

  6. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  7. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  8. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenba, M. Tanielian, Phys. Rev. Lett. 90, 1074011 (2003)

    Article  Google Scholar 

  9. A.A. Houck, J.B. Brock, I.L. Chuang, Phys. Rev. Lett. 90, 1374011 (2003)

    Article  Google Scholar 

  10. I.V. Lindell, S.A. Tretyakov, K.I. Nikoskinen, S. Ilvonen, Microw. Opt. Technol. Lett. 31, 129 (2001)

    Google Scholar 

  11. L. Hu, S.T. Chui, Phys. Rev. B 66, 0851081 (2002)

    Google Scholar 

  12. L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. B 68, 1154241 (2003)

    Google Scholar 

  13. D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 0774051 (2003)

    Google Scholar 

  14. T.M. Grzegorczyk, Z.M. Thomas, J.A. Kong, Appl. Phys. Lett. 86, 251909 (2005)

    Article  Google Scholar 

  15. T.M. Grzegorczyk, C.D. Moss, J. Lu, X. Cheng, J. Pacheco, J.A. Kong, IEEE Trans. Microw. Theory Technol. 53, 2956 (2005)

    Article  Google Scholar 

  16. Z.M. Thomas, T.M. Grzegorczyk, B.I. Wu, X. Chen, J.A. Kong, Opt. Express 13, 4737 (2005)

    Article  ADS  Google Scholar 

  17. H. Luo, W. Hu, X. Yi, H. Liu, J. Zhu, Opt. Commun. 254, 353 (2005)

    Article  ADS  Google Scholar 

  18. H. Luo, W. Hu, W. Shu, F. Li, Z. Ren, Europhys. Lett. 74, 1081 (2006)

    Article  ADS  Google Scholar 

  19. R.A. Depine, M.E. Inchaussandague, A. Lakhtakia, J. Opt. Soc. Am. A 23, 949 (2006)

    Article  ADS  Google Scholar 

  20. H.C. Chen, Theory of Electromagnetic Waves (McGraw-Hill, New York, 1983)

    Google Scholar 

  21. H. Luo, Z. Ren, W. Shu, F. Li, Appl. Phys. A 87, 245 (2007)

    Article  ADS  Google Scholar 

  22. H. Luo, W. Shu, F. Li, Z. Ren, Opt. Commun. 267, 271 (2006)

    Article  ADS  Google Scholar 

  23. K. Aydin, K. Guven, C.M. Soukoulis, E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005)

    Article  ADS  Google Scholar 

  24. M. Ricci, S.M. Anlagea, Appl. Phys. Lett. 88, 264102 (2006)

    Article  Google Scholar 

  25. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)

    Article  ADS  Google Scholar 

  26. S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Opt. Express 14, 6778 (2006)

    Article  ADS  Google Scholar 

  27. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

  28. A.V. Kildishev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, V.M. Shalaev, J. Opt. Soc. Am. B 23, 423 (2006)

    Article  Google Scholar 

  29. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 31, 1800 (2006)

    Article  ADS  Google Scholar 

  30. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 32, 53 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Luo.

Additional information

PACS

41.20.Jb; 42.25.Gy; 78.20.Ci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Ren, Z., Shu, W. et al. Construct a polarizing beam splitter by an anisotropic metamaterial slab. Appl. Phys. B 87, 283–287 (2007). https://doi.org/10.1007/s00340-007-2596-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2596-8

Keywords

Navigation