Skip to main content
Log in

Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a new mid-infrared laser spectrometer for high-precision measurements of isotopic ratios of molecules at ppm concentrations. Results are discussed for nitrous oxide (N2O), where a precision of 3‰ for a single measurement and a reproducibility of 6‰ have been achieved for a concentration of 825 ppm. The room-temperature laser source employed is based on difference-frequency generation delivering a continuous-wave power up to 23 μW at wavelengths between 4.3 μm and 4.7 μm and a line width of 1 MHz. Two different measurement methods are compared; wavelength modulation with first-harmonic detection and direct absorption spectroscopy by recording the spectrum with a data-acquisition card. Two different detection schemes were employed; either all isotopomers were measured using the long path (36 m) of the multipass cell or a balanced path length detection scheme was used, where the main isotope was measured with a beam along a shorter path (40 cm) in the multipass cell. A single-pass reference cell was designed, offering two different path lengths for balanced path length detection. All combinations of measurement methods and detection schemes were tested regarding precision of a single measurement and long-term stability. The advantages and disadvantages of various measurement approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.K. Tittel, A.A. Kosterev (guest eds.), Appl. Phys. B 85, 171 (2006)

  2. D. Yakir, L.S.L. Sternberg, Oecologia (Berlin) 123, 297 (2000)

    Google Scholar 

  3. D.R. Bowling, S.D. Sargent, B.D. Tanner, J.R. Ehleringer, Agric. For. Meteorol. 118, 1 (2003)

    Article  Google Scholar 

  4. T. Tesdesco, P. Sarsi, Earth Planet. Sci. Lett. 171, 465 (1999)

    Article  ADS  Google Scholar 

  5. F.K. Tittel, D. Weidmann, C. Oppenheimer, L. Gianfrani, Opt. Photon. News 17, 24 (2006)

    Google Scholar 

  6. A. Amann, D. Smith (eds.), Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring (World Scientific, Singapore, 2005)

  7. S. Koletzko, M. Haisch, I. Seeboth, B. Braden, K. Hengels, B. Koletzko, P. Hering, Lancet 345, 961 (1995)

    Article  Google Scholar 

  8. H. Graig, Geochim. Cosmochim. Acta 12, 133 (1957)

    Article  ADS  Google Scholar 

  9. T. Röckmann, J. Kaiser, C.A.M. Brenninkmeijer, W. Brand, Rapid Commun. Mass Spectrom. 17, 1897 (2003)

    Google Scholar 

  10. D.R. Bowling, P.P. Tans, K.M. Russel, Global Change Biol. 7, 127 (2001)

  11. K. Uehara, K. Yamamoto, T. Kikugawa, N. Yoshida, Spectrochim. Acta A 59, 957 (2003)

    Article  Google Scholar 

  12. G. Gagliardi, S. Borri, F. Tamassia, F. Capasso, C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Isotopes Environ. Health Stud. 41, 313 (2005)

    Article  Google Scholar 

  13. J.B. McManus, D.D. Nelson, J.H. Shorter, R. Jimenez, S. Herndon, S. Saleska, M. Zahniser, J. Mod. Opt. 52, 2309 (2005)

    Article  ADS  Google Scholar 

  14. D. Yakir, X.F. Wang, Nature 380, 515 (1996)

    Article  ADS  Google Scholar 

  15. T. Rahn, M. Wahlen, Science 278, 1776 (1997)

    Article  ADS  Google Scholar 

  16. T. Röckmann, J. Kaiser, C.A.M. Brenninkmeijer, Atmosph. Chem. Phys. 3, 315 (2003)

    Article  ADS  Google Scholar 

  17. W.M. White, Geochemistry (John-Hopkins University Press, Cornell, 1997), Online Textbook, Chapt. 9 [www.geo.cornell.edu/geology/classes/geo455/Chapters.html]

  18. T. Röckmann, J. Kaiser, C.A.M. Brenninkmeijer, J.N. Crowley, R. Borchers, W.A. Brand, P.J. Crutzen, J. Geophys. Res. 106, 10403 (2001)

    Article  Google Scholar 

  19. I.T. Sorokina, K.L. Vodopyanov (eds.), Solid-State Mid-Infrared Laser Sources (Top. Appl. Phys. 89) (Springer, Berlin Heidelberg, 2003)

  20. J. Faist, Opt. Photon. News 17, 32 (2006)

    Google Scholar 

  21. H. Waechter, M.W. Sigrist, Mid-infrared coherent sources and applications, in Mathematics, Physics and Chemistry (Nato Sci. Ser. II), ed. by M. Ebrahimzadeh, I.T. Sorokina (Springer, Berlin Heidelberg, 2006)

  22. L.E. Myers, R.C. Eckhardt, M.M. Feyer, R.L. Byer, W.R. Bosenberg, Opt. Lett. 21, 591 (1996)

    ADS  Google Scholar 

  23. S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Appl. Phys. B 76, 473 (2003)

    Article  ADS  Google Scholar 

  24. G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 36, 3597 (1968)

    Article  ADS  Google Scholar 

  25. T.B. Chu, M. Broyer, J. Phys. France 45, 1599 (1984)

    Google Scholar 

  26. P. Bergamaschi, M. Schupp, G.W. Harris, Appl. Opt. 33, 7704 (1994)

    Article  ADS  Google Scholar 

  27. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Macki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

  28. G. Gagliardi, A. Castrillo, R.Q. Iannone, E.R.T. Kerstel, L. Gianfrani, Appl. Phys. B 77, 119 (2003)

    Article  Google Scholar 

  29. M. Erdélyi, D. Richter, F.K. Tittel, Appl. Phys. B 75, 289 (2002)

    Article  ADS  Google Scholar 

  30. E.R.T. Kerstel, R. van Trigt, N. Dam, J. Reuss, H.A.J. Meijer, Anal. Chem. 71, 5297 (1999)

    Article  Google Scholar 

  31. A. Castrillo, G. Casa, E. Kerstel, L. Gianfrani, Appl. Phys. B 81, 863 (2005)

    Article  ADS  Google Scholar 

  32. E. Theocharous, Infrared Phys. Technol. 48, 175 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.W. Sigrist.

Additional information

PACS

42.62.Fi; 42.65.Ky; 32.10.Bi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waechter, H., Sigrist, M. Mid-infrared laser spectroscopic determination of isotope ratios of N2O at trace levels using wavelength modulation and balanced path length detection. Appl. Phys. B 87, 539–546 (2007). https://doi.org/10.1007/s00340-007-2576-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2576-z

Keywords

Navigation