Skip to main content

Advertisement

Log in

Direct joining of glass substrates by 1 kHz femtosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

When a femtosecond laser pulse is focused at the interface of two transparent substrates, localised melting and quenching of the two substrates occur around the focal volume, bridging them due to nonlinear absorption. The substrates can then be joined by resolidification of the materials. We investigate the optimum irradiation conditions needed to join borosilicate glass substrates and fused silica substrates using a 1 kHz 800 nm Ti:sapphire amplifier. We characterised the joint strength and the transmittance through joint volumes as a function of laser energy and translation velocity. We found that a joining strength as large as 14.9 MPa could be obtained in both fused silica and borosilicate glass. Annealing the joint samples led to an increase in the joint strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  2. C.B. Schaffer, A. Brodeur, J.F. García, E. Mazur, Opt. Lett. 26, 93 (2001)

    ADS  Google Scholar 

  3. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Commun. 171, 279 (1999)

    Article  ADS  Google Scholar 

  4. K. Kawamura, N. Sarukura, M. Hirano, H. Hosono, Appl. Phys. Lett. 78, 1038 (2001)

    Article  ADS  Google Scholar 

  5. W. Watanabe, D. Kuroda, K. Itoh, J. Nishii, Opt. Express 10, 978 (2002)

    ADS  Google Scholar 

  6. W. Watanabe, T. Asano, K. Yamada, K. Itoh, J. Nishii, Opt. Lett. 28, 2491 (2003)

    ADS  Google Scholar 

  7. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S.D. Silvestri, G. Cerullo, J. Opt. Soc. Am. B 20, 1559 (2003)

    ADS  Google Scholar 

  8. S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Appl. Phys. A 77, 109 (2003)

    Article  ADS  Google Scholar 

  9. R.S. Taylor, C. Hnatovsky, E. Simova, D.M. Rayner, M. Mehandale, V.R. Bhardwaj, P.B. Corkum, Opt. Express 11, 775 (2003)

    Article  ADS  Google Scholar 

  10. Y. Cheng, K. Sugioka, K. Midorikawa, Opt. Lett. 29, 2007 (2004)

    Article  ADS  Google Scholar 

  11. Y. Li, Y. Dou, R. An, H. Yang, Q. Gong, Opt. Express 13, 2433 (2005)

    Article  ADS  Google Scholar 

  12. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, Appl. Phys. Lett. 87, 031101 (2005)

    Article  ADS  Google Scholar 

  13. L. Shah, A.Y. Arai, S.M. Eaton, P.R. Herman, Opt. Express 13, 1999 (2005)

    Article  ADS  Google Scholar 

  14. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  15. P.H. Carr, J. Acoust. Soc. Am. 37, 927 (1965)

    Article  ADS  Google Scholar 

  16. H.I. Smith, J. Acoust. Soc. Am. 37, 928 (1965)

    Article  ADS  Google Scholar 

  17. T. Rogers, J. Kowal, Sens. Actuators A 46–47, 113 (1995)

    Article  Google Scholar 

  18. H. Nakanishi, T. Nishimoto, R. Nakamura, A. Yotsumoto, T. Yoshida, S. Shoji, Sens. Actuators A 79, 237 (2000)

    Article  Google Scholar 

  19. T.M.H. Lee, D.H.Y. Lee, C.Y.N. Liaw, A.I.K. Lao, I.M. Hsin, Sens. Actuators A 86, 103 (2000)

    Article  Google Scholar 

  20. P.W. Barth, Sens. Actuators A 21–23, 919 (1990)

    Article  Google Scholar 

  21. M. Wild, A. Gillner, R. Poprawe, Sens. Actuators A 93, 63 (2001)

    Article  Google Scholar 

  22. A.W.Y. Tan, F.E.H. Tay, Sens. Actuators A 120, 550 (2005)

    Article  Google Scholar 

  23. T. Tamaki, W. Watanabe, J. Nishii, K. Itoh, Japan. J. Appl. Phys. Part 2 44, L687 (2005)

    Article  Google Scholar 

  24. J.W. Chan, T. Huser, S. Risbud, D.M. Krol, Opt. Lett. 26, 1726 (2001)

    ADS  Google Scholar 

  25. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Appl. Phys. Lett. 89, 021106 (2006)

    Article  ADS  Google Scholar 

  26. S.P. Timoshenko, J.N. Goodier, Theory of elasticity, 3rd edn. (McGraw-Hill, New York, 1970)

  27. K. Yamada, W. Watanabe, T. Toma, K. Itoh, J. Nishii, Opt. Lett. 26, 19 (2001)

    ADS  Google Scholar 

  28. D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, C. Smith, Opt. Lett. 24, 1311 (1999)

    ADS  Google Scholar 

  29. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Commun. 191, 333 (2001)

    Article  ADS  Google Scholar 

  30. S. Onda, W. Watanabe, K. Yamada, K. Itoh, J. Nishii, J. Opt. Soc. Am. B 22, 2437 (2005)

    Article  ADS  Google Scholar 

  31. A. Saliminia, N.T. Nguyen, S.L. Chin, R. Vallée, J. Appl. Phys. 99, 093104 (2006)

    Article  ADS  Google Scholar 

  32. K. Yamada, W. Watanabe, J. Nishii, K. Itoh, Japan. J. Appl. Phys. Part 1 42, 6916 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Watanabe.

Additional information

PACS

42.65.Jx; 42.70.Ce; 81.20.Vj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, W., Onda, S., Tamaki, T. et al. Direct joining of glass substrates by 1 kHz femtosecond laser pulses. Appl. Phys. B 87, 85–89 (2007). https://doi.org/10.1007/s00340-006-2537-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2537-y

Keywords

Navigation