Applied Physics B

, Volume 86, Issue 3, pp 385–390 | Cite as

Nonexponential decay of Bose–Einstein condensates: a numerical study based on the complex scaling method



We study the decay dynamics of an interacting Bose–Einstein condensate in the presence of a metastable trapping potential from which the condensate can escape via tunneling through finite barriers. The time-dependent decay process is reproduced by means of the instantaneous decay rates of the condensate at a given population of the quasi-bound state, which are calculated with the method of complex scaling. Both for the case of a double-barrier potential as well as for the case of a tilted periodic potential, we find pronounced deviations from a monoexponential decay behavior, which would generally be expected in the absence of the atom–atom interaction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hecker Denschlag, J.E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S.L. Rolston, W.D. Phillips, J. Phys. B 35, 3095 (2002)CrossRefADSGoogle Scholar
  2. 2.
    I. Bloch, J. Phys. B 38, S629 (2005)CrossRefADSGoogle Scholar
  3. 3.
    O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)CrossRefADSGoogle Scholar
  4. 4.
    R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 84, 4749 (2000)CrossRefADSGoogle Scholar
  5. 5.
    R. Folman, P. Krüger, J. Denschlag, C. Henkel, J. Schmiedmayer, Adv. At. Mol. Opt. Phys. 48, 263 (2003)Google Scholar
  6. 6.
    B.P. Anderson, M.A. Kasevich, Science 282, 1686 (1998)CrossRefADSGoogle Scholar
  7. 7.
    O. Morsch, J.H. Müller, M. Cristiani, D. Ciampini, E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001)CrossRefADSGoogle Scholar
  8. 8.
    H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001)CrossRefADSGoogle Scholar
  9. 9.
    W. Hänsel, J. Reichel, P. Hommelhoff, T.W. Hänsch, Phys. Rev. Lett. 86, 608 (2001)CrossRefADSGoogle Scholar
  10. 10.
    T.L. Gustavson, A.P. Chikkatur, A.E. Leanhardt, A. Görlitz, S. Gupta, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 88, 020401 (2002)CrossRefADSGoogle Scholar
  11. 11.
    M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)CrossRefADSGoogle Scholar
  12. 12.
    T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Krüger, Nature Phys. 1, 57 (2005)CrossRefADSGoogle Scholar
  13. 13.
    H. Friedrich, Theoretical Atomic Physics, 2nd edn. (Springer, Berlin, 1994)Google Scholar
  14. 14.
    N. Moiseyev, L.D. Carr, B.A. Malomed, Y.B. Band, J. Phys. B 37, L193 (2004)CrossRefGoogle Scholar
  15. 15.
    D. Witthaut, S. Mossmann, H.J. Korsch, J. Phys. A 38, 1777 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    L.D. Carr, M.J. Holland, B.A. Malomed, J. Phys. B 38, 3217 (2005)CrossRefADSGoogle Scholar
  17. 17.
    N. Moiseyev, L.S. Cederbaum, Phys. Rev. A 72, 033605 (2005)CrossRefADSGoogle Scholar
  18. 18.
    P. Schlagheck, T. Paul, Phys. Rev. A 73, 023619 (2006)CrossRefADSGoogle Scholar
  19. 19.
    S. Wimberger, P. Schlagheck, R. Mannella, J. Phys. B 39, 729 (2006)CrossRefADSGoogle Scholar
  20. 20.
    E. Balslev, J.M. Combes, Commun. Math. Phys. 22, 280 (1971)MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    B. Simon, Ann. Math. 97, 247 (1973)CrossRefGoogle Scholar
  22. 22.
    W.P. Reinhardt, Ann. Rev. Phys. Chem. 33, 223 (1982)CrossRefGoogle Scholar
  23. 23.
    N. Moiseyev, Phys. Rep. 302, 212 (1998)CrossRefADSGoogle Scholar
  24. 24.
    A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)CrossRefADSGoogle Scholar
  25. 25.
    C. Weiss, T. Jinasundera, Phys. Rev. A 72, 053626 (2005)CrossRefADSGoogle Scholar
  26. 26.
    C. Menotti, S. Stringari, Phys. Rev. A 66, 043610 (2002)CrossRefADSGoogle Scholar
  27. 27.
    M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)CrossRefADSGoogle Scholar
  28. 28.
    A.J.F. Siegert, Phys. Rev. 56, 750 (1939)CrossRefADSGoogle Scholar
  29. 29.
    S. Wimberger, R. Mannella, O. Morsch, E. Arimondo, A. Kolovsky, A. Buchleitner, Phys. Rev. A 72, 063610 (2005)CrossRefADSGoogle Scholar
  30. 30.
    We neglect here the fact that there also exist ‘long-lived’ continuum states in the open system under consideration, the decay rates of which can be comparable to or smaller than that of the energetically lowest quasi-bound state. In practice, the unwanted convergence into such continuum states can be avoided by starting with an initial wavefunction that is rather close to the quasi-bound state to be calculatedGoogle Scholar
  31. 31.
    A. Buchleitner, B. Grémaud, D. Delande, J. Phys. B 27, 2663 (1994)CrossRefADSGoogle Scholar
  32. 32.
    The number of atoms in the well can be enhanced by choosing a weaker transverse confinement, e.g. ω=102 Hz, for which one would obtain N(0)≃1000 atoms. In that case, however, three-dimensional calculations ought to be performed in order to make reliable quantitative predictions for the decay processGoogle Scholar
  33. 33.
    A. Günther, S. Kraft, M. Kemmler, D. Koelle, R. Kleiner, C. Zimmermann, J. Fortágh, Phys. Rev. Lett. 95, 170405 (2005)CrossRefGoogle Scholar
  34. 34.
    C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (University Press, Cambridge, 2002)Google Scholar
  35. 35.
    T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, M.K. Oberthaler, Phys. Rev. Lett. 94, 020403 (2005)CrossRefADSGoogle Scholar
  36. 36.
    T. Paul, K. Richter, P. Schlagheck, Phys. Rev. Lett. 94, 020404 (2005)CrossRefADSGoogle Scholar
  37. 37.
    R. Gati, B. Hemmerling, J. Fölling, M. Albiez, M.K. Oberthaler, Phys. Rev. Lett. 96, 130404 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  2. 2.Dipartimento di Fisica Enrico Fermi and CNR-INFMUniversità degli Studi di PisaPisaItaly

Personalised recommendations