Advertisement

Applied Physics B

, Volume 85, Issue 4, pp 503–507 | Cite as

Quantum trajectory perspective of atom–field interaction in attosecond time scale

  • I.P. ChristovEmail author
Rapid communication

Abstract

The ionization and high-harmonic generation in hydrogen and helium by using quantum (hydrodynamic) trajectories is analyzed theoretically. The quantum trajectories are introduced in the frame of a new time-dependent quantum Monte Carlo technique that allows a self-contained ab initio treatment of the electron correlation effects without introducing parametrized correlation potentials into the Schrödinger equation. Our approach predicts correct ionization, high-harmonic spectra, and attosecond pulses generated by a helium atom beyond the single active electron approximation. It can be used to study complex multi-electron systems in arbitrary dimensions and their interaction with laser fields of both low and high intensity.

Keywords

Helium Atom Harmonic Spectrum Outer Electron Attosecond Pulse Quantum Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Reider, J. Phys. D Appl. Phys. 37, R37 (2004)CrossRefADSGoogle Scholar
  2. 2.
    K. Kulander, K. Schafer, J. Krause, in Atoms in Intense Laser Fields, ed. by M. Gavrila (Academic, New York, 1992), pp. 247–300Google Scholar
  3. 3.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)CrossRefADSGoogle Scholar
  4. 4.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)CrossRefADSGoogle Scholar
  5. 5.
    P.J. Ho, R. Panfili, S.L. Haan, J.H. Eberly, Phys. Rev. Lett. 94, 093002-1 (2005)ADSGoogle Scholar
  6. 6.
    I.P. Christov, Opt. Express 14, 6906 (2006)CrossRefGoogle Scholar
  7. 7.
    P. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993)zbMATHGoogle Scholar
  8. 8.
    R.E. Wyatt, Quantum Dynamics with Trajectories (Springer, New York, 2005)zbMATHGoogle Scholar
  9. 9.
    A.K. Roy, S. Chu, Phys. Rev. A 65, 043402 (2002)CrossRefADSGoogle Scholar
  10. 10.
    I.P. Christov, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997)CrossRefADSGoogle Scholar
  11. 11.
    M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 511 (2001)CrossRefADSGoogle Scholar
  12. 12.
    R. Grobe, J.H. Eberly, Phys. Rev. A 48, 4664 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of SofiaSofiaBulgaria

Personalised recommendations