Applied Physics B

, Volume 86, Issue 4, pp 735–742 | Cite as

Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry

  • B.V. Pond
  • C. Mullen
  • I. Suarez
  • J. Kessler
  • K. Briggs
  • S.E. Young
  • M.J. Coggiola
  • D.R. Crosley
  • H. Oser
Article

Abstract

We report studies using laser photoionization and time-of-flight mass spectrometry to detect several explosive-related compounds (ERCs). The ultimate goal of this work is the detection of buried land mines through their chemical signatures. Resonantly enhanced multiphoton ionization using jet expansion cooling, with a nanosecond pulse laser, results in complete photofragmentation of the parent ERC and appearance only of the NO+ ion, which forms all of the detected signal. This will also occur for compounds naturally occurring in the environment, such as NO2 or peroxyacetylnitrate, rendering too many false alarms for this approach to be viable. Therefore, two other techniques were evaluated. Single-photon ionization with nanosecond pulses in the vacuum ultraviolet is shown to produce only the parent ion, and is probably the most suitable choice. For 2,4-dinitrobenzene we find a limit of detection of about 40 ppb, for a signal to noise ratio of 3. This may be sufficient for land-mine detection, but improvement is likely with future work. Nonresonant multiphoton ionization in the ultraviolet with a femtosecond laser produces fragmentation but retains some parent ERC ion signal. The limit of detection is similar to that of single-photon ionization but it is harder to implement with lasers now commercially available. Future directions are outlined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. George, T.F. Jenkins, D.C. Leggett, J.H. Cragin, J. Phelan, J. Oxley, J. Pennington, Proc. Soc. Photo-Opt. Instrum. Eng. 3710, 259 (1999)Google Scholar
  2. 2.
    V. George, T.F. Jenkins, J.M. Phelan, D.C. Leggett, J. Oxley, S.W. Webb, P.H. Miyares, J.H. Cragin, J. Smith, T.E. Berry, Proc. Soc. Photo-Opt. Instrum. Eng. 4038, 590 (2000)Google Scholar
  3. 3.
    http://www.vetmed.auburn.edu/ibds/doglab.htm (2000)Google Scholar
  4. 4.
    J.B. Spicer, P. Dagdigian, R. Osiander, J.A. Miragliotta, X.C. Zhang, R. Kersting, D.R. Crosley, R.K. Hanson, J. Jeffries, Proc. Soc. Photo-Opt. Instrum. Eng. 5089, 1088 (2003)Google Scholar
  5. 5.
    G.S. Settles, J. Fluid Eng. 127, 189 (2005)CrossRefGoogle Scholar
  6. 6.
    G.W. Lemire, J.B. Simeonsson, R. Sausa, Anal. Chem. 65, 529 (1993)CrossRefGoogle Scholar
  7. 7.
    J. Shu, I. Bar, S. Rosenwaks, Appl. Opt. 38, 4705 (1999)CrossRefADSGoogle Scholar
  8. 8.
    A. Marshall, A. Clark, R. Jennings, K.W.D. Ledingham, J. Sander, R.P. Singhal, Int. J. Mass Spectrom. 116, 143 (1992)CrossRefGoogle Scholar
  9. 9.
    A. Marshall, A. Clark, K.W.D. Ledingham, J. Sander, R.P. Singhal, C. Kosmidis, R.M. Deas, Rapid Commun. Mass Spectrom. 8, 512 (1994)CrossRefGoogle Scholar
  10. 10.
    C. Kosmidis, A. Marshall, A. Clark, R.M. Deas, K.W.D. Ledingham, R.P. Singhal, Rapid Commun. Mass Spectrom. 8, 607 (1994)CrossRefGoogle Scholar
  11. 11.
    D. Wu, J.P. Singh, F.Y. Yeuh, D.L. Monts, Appl. Opt. 35, 3998 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    J. Shu, I. Bar, S. Rosenwaks, Appl. Phys. B 70, 621 (2000)CrossRefADSGoogle Scholar
  13. 13.
    J. Shu, I. Bar, S. Rosenwaks, Appl. Phys. B 71, 665 (2000)CrossRefADSGoogle Scholar
  14. 14.
    T. Arsui-Parper, D. Heflinger, R. Levi, Appl. Opt. 40, 6677 (2001)ADSGoogle Scholar
  15. 15.
    D. Heflinger, T. Arusi-Parper, Y. Ron, R. Levi, Opt. Commun. 204, 327 (2002)CrossRefADSGoogle Scholar
  16. 16.
    H. Oser, R. Thanner, H.H. Grotheer, in Proc. Eighth Int. Symp. Transport Phenomena in Combustion, vol. II, 1996, p. 1646Google Scholar
  17. 17.
    R. Thanner, H. Oser, H.H. Grotheer, Eur. Mass Spectrom. 4, 215 (1998)Google Scholar
  18. 18.
    H. Oser, K. Copic, M.J. Coggiola, G.W. Faris, D.R. Crosley, Chemosphere 43, 469 (2001)CrossRefGoogle Scholar
  19. 19.
    H. Oser, M.J. Coggiola, G.W. Faris, S.E. Young, B. Volquardsen, D.R. Crosley, Appl. Opt. 40, 859 (2001)ADSGoogle Scholar
  20. 20.
    F. Muhlberger, R. Zimmerman, A. Kettrup, Anal. Chem. 73, 3590 (2001)CrossRefGoogle Scholar
  21. 21.
    F. Muhlberger, K. Hafner, S. Kaesdorf, T. Fergo, R. Zimmerman, Anal. Chem. 76, 6753 (2004)CrossRefGoogle Scholar
  22. 22.
    K.W.D. Ledingham, H.S. Kilic, C. Kosmidis, R.M. Deas, A. Marshall, T. McCanny, R.P. Singhal, A.J. Langley, W. Shaikh, Rapid Commun. Mass Spectrom. 9, 1522 (1995)CrossRefGoogle Scholar
  23. 23.
    C. Kosmidis, K.W.D. Ledingham, H.S. Kilic, T. McCanny, T.P. Singhal, A.J. Langley, W. Shaikh, J. Phys. Chem. A 101, 2265 (1997)CrossRefGoogle Scholar
  24. 24.
    S.M. Hankin, L. Robson, A.D. Tasker, K.W.D. Ledingham, T. McCanny, R.P. Singhal, C. Kosmidis, P. Tzallas, A.J. Langley, P.F. Taday, E.J. Divall, in Tenth Int. Symp. Resonance Ionization Spectroscopy, 2000, p. 14Google Scholar
  25. 25.
    S.M. Hankin, A.D. Tasker, L. Robson, K.W.D. Ledingham, X. Fang, P. McKenna, T. McCanny, R.P. Singhal, C. Kosmidis, P. Tzallas, D.A. Jarozynski, D.R. Jones, R.C. Isaac, S. Jamison, Rapid Commun. Mass Spectrom. 16, 111 (2002)CrossRefGoogle Scholar
  26. 26.
    K. Tönnies, R.P. Schmid, C. Weickhardt, J. Reif, J. Grotemeyer, Int. J. Mass Spectrom. 206, 245 (2001)CrossRefGoogle Scholar
  27. 27.
    C. Weickhardt, K. Tönnies, Rapid Commun. Mass Spectrom. 16, 442 (2002)CrossRefGoogle Scholar
  28. 28.
    R.H. Lipson, S.S. Dimov, P. Wang, Y.J. Shi, D.M. Mao, X.K. Hu, J. Vanstone, Instrum. Sci. Technol. 28, 85 (2000)CrossRefGoogle Scholar
  29. 29.
    J.W. Hepburn, in Laser Techniques in Chemistry, vol. 23, ed. by A.B. Meyers, T.R. Rizzo (Wiley, New York, 1995), p. 149Google Scholar
  30. 30.
    N.P. Lockyer, J.C. Vickerman, Laser Chem. 17, 139 (1997)Google Scholar
  31. 31.
    C. Mullen, A. Irwin, B.V. Pond, D.L. Huestis, M.J. Coggiola, H. Oser, Anal. Chem. 78, 3807 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Luque, D.R. Crosley, LIFBASE: Database and spectral simulation, ver. 1.5, SRI International Rep. MP 99-009 (1999)Google Scholar
  33. 33.
    B.J. Finlayson-Pitts, J.N. Pitts, Chemistry of the Upper and Lower Atmosphere (Academic, San Diego, CA, 2000)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • B.V. Pond
    • 1
  • C. Mullen
    • 2
  • I. Suarez
    • 2
  • J. Kessler
    • 2
  • K. Briggs
    • 2
  • S.E. Young
    • 2
  • M.J. Coggiola
    • 2
  • D.R. Crosley
    • 2
  • H. Oser
    • 2
  1. 1.Department of Mechanical Engineering, Stanford University and Molecular Physics LaboratorySRI InternationalMenlo ParkUSA
  2. 2.Molecular Physics LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations