Skip to main content
Log in

Resolving pm wavelength shifts in optical sensing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The reflection or transmission properties of one and two-dimensional photonic crystals are widely used for optical sensing applications. A variety of optical sensors exist that change their optical properties upon receiving a stimulus. A compact wavelength detector capable of resolving very small changes in the spectral output of these sensors is highly desirable. A photodiode array (PDA) or position sensor device (PSD) in combination with a linear variable band-pass filter constitutes a very robust and compact device to detect those changes. The filter converts the wavelength information of the incident light into a spatial intensity distribution that is analyzed by the photodetector. We have investigated the performance of these wavelength detectors depending on the optical properties of the filter. This includes the gradient with which the transmission peak shifts across the filter surface and the spectral width of the transmission function. Also, we point out differences between the PDA and the PSD and analyze the influence of inhomogeneous illumination on the unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Homola, S. Yee, D. Myszka, Surface Plasmon Resonance Biosensors, In: Optical Biosensors, Present and Future ed. by F. Liger, C.A. Rowe Taitt (Elsevier Science, New York, 2002) Chapt. 7

  2. H. Ouyang, C.C. Striemer, P.M. Fauchet, Appl. Phys. Lett. 88, 163108 (2006)

    Article  ADS  Google Scholar 

  3. B. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, L. Laing, J. Biomol. Screen. 9, 481 (2004)

    Article  Google Scholar 

  4. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, Appl. Phys. Lett. 80, 4057 (2002)

    Article  ADS  Google Scholar 

  5. B. Lee, Opt. Fiber Technol. 9, 57 (2003)

    Article  ADS  Google Scholar 

  6. A. Othonos, K. Kalli, Fiber–Bragg Gratings (Artech House, Boston, 1999)

    Google Scholar 

  7. A.D. Kersey, IEEE J. Lightwave Technol. 15, 1442 (1997)

    Article  ADS  Google Scholar 

  8. A.D. Kersey, T.A. Berkoff, W.W. Morey, Electron. Lett. 28, 236 (1992)

    ADS  Google Scholar 

  9. G.A. Ball, W.W. Morey, P.K. Cheo, IEEE J. Lightwave Technol. 12, 700 (1994)

    Article  ADS  Google Scholar 

  10. A.D. Kersey, T.A. Berkoff, W.W. Morey, Opt. Lett. 18, 1370 (1993)

    Article  ADS  Google Scholar 

  11. S.M. Melle, K. Liu, R.M. Measures, IEEE Photon. Technol. Lett. 4, 516 (1992)

    Article  ADS  Google Scholar 

  12. S.Y. Hu, J. Ko, L.A. Coldren, Appl. Phys. Lett. 70, 2347 (1997)

    Article  ADS  Google Scholar 

  13. S.F. Pellicori, A.M. Mika, US Patent No. 4957371 (1990)

  14. W. Wang, Sensors and Actuators in Mechatronics, In: Mechatronics in Engineering Design and Product Development, ed. by D. Popovic, L. Vlacic (Marcel Dekker, New York, 1999), Chapt. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Schmidt.

Additional information

PACS

42.68.Ay; 42.79.-e; 42.81.Pa

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, O., Kiesel, P., Mohta, S. et al. Resolving pm wavelength shifts in optical sensing. Appl. Phys. B 86, 593–600 (2007). https://doi.org/10.1007/s00340-006-2456-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2456-y

Keywords

Navigation