Advertisement

Applied Physics B

, Volume 85, Issue 4, pp 493–501 | Cite as

Expansion of the relative time delay by switching between slow and fast light using coherent population oscillation with semiconductors

  • H.-Y. Tseng
  • J. Huang
  • A. AdibiEmail author
Rapid communication

Abstract

The slow-light effect based on free-carrier population oscillation in semiconductors is analyzed using generalized macroscopic Bloch equations. Using this model, we are able to investigate the relation between the fractional time delay and the intensity of control laser beams for semiconductors. It is found that although increasing the control-beam intensity can enlarge the fractional time delay, the maximum delay that can be achieved is limited and determined by a critical value of the separation between the quasi-Fermi levels of electrons and holes. We also show that there is an intensity threshold for the control beam above which the probe signal becomes gain-assisted fast light rather than slow light. We therefore suggest a method to expand the relative time delay by switching between the fast-light region and the slow-light region through changing the intensity of the control laser beams.

Keywords

Probe Signal Control Beam Slow Light Gain Threshold Optical Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.E. Harris, J.E. Field, A. Imamoğlu, Phys. Rev. Lett. 64, 1107 (1990)CrossRefADSGoogle Scholar
  2. 2.
    K.J. Boller, A. Imamoğlu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)CrossRefADSGoogle Scholar
  3. 3.
    S.E. Harris, Phys. Today 50, 36 (1997)Google Scholar
  4. 4.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)CrossRefADSGoogle Scholar
  5. 5.
    M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 84, 5094 (2000)CrossRefADSGoogle Scholar
  6. 6.
    M.D. Lukin, A. Imamoğlu, Nature 413, 273 (2001)CrossRefADSGoogle Scholar
  7. 7.
    M. Fleischhauer, A. Imamoğlu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)CrossRefADSGoogle Scholar
  8. 8.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003)CrossRefADSGoogle Scholar
  9. 9.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003)CrossRefADSGoogle Scholar
  10. 10.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, J. Phys. 16, R1321 (2004)Google Scholar
  11. 11.
    E. Baldit, K. Bencheikh, P. Monnier, J.A. Levenson, V. Rouget, Phys. Rev. Lett. 95, 143601 (2005)CrossRefADSGoogle Scholar
  12. 12.
    P.C. Ku, F. Sedgwick, C.J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.W. Chang, S.L. Chuang, Opt. Lett. 29, 2291 (2004)CrossRefADSGoogle Scholar
  13. 13.
    S.W. Chang, S.L. Chuang, P.C. Ku, C.J. Chang-Hasnain, P. Palinginis, H. Wang, Phys. Rev. B 70, 235333 (2004)CrossRefADSGoogle Scholar
  14. 14.
    P. Palinginis, S. Crankshaw, F. Sedgwick, E.T. Kim, M. Moewe, C.J. Chang-Hasnain, H. Wang, S.L. Chuang, Appl. Phys. Lett. 87, 17102 (2005)CrossRefGoogle Scholar
  15. 15.
    P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, C.J. Chang-Hasnain, Opt. Express 13, 9909 (2005)CrossRefADSGoogle Scholar
  16. 16.
    J. Mørk, R. Kjaer, M. van der Poel, K. Yvind, Opt. Express 13, 8136 (2005)CrossRefADSGoogle Scholar
  17. 17.
    H. Su, S.L. Chuang, Opt. Lett. 31, 271 (2006)CrossRefGoogle Scholar
  18. 18.
    H. Su, S.L. Chuang, Appl. Phys. Lett. 88, 061102 (2006)CrossRefGoogle Scholar
  19. 19.
    S.W. Chang, S.L. Chuang, Phys. Rev. B 72, 235330 (2005)CrossRefADSGoogle Scholar
  20. 20.
    P. Wu, D.V. G.L.N. Rao, Phys. Rev. Lett. 95, 253601 (2005)CrossRefADSGoogle Scholar
  21. 21.
    N.N. Lepeshkin, A. Schweinsberg, M.S. Bigelow, G. Gehring, R.W. Boyd, Proc. CLEO’05, QTuC3 (2005)Google Scholar
  22. 22.
    R.W. Boyd, M.G. Raymer, P. Narum, D.J. Harter, Phys. Rev. A 24, 411 (1981)CrossRefADSGoogle Scholar
  23. 23.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)CrossRefADSGoogle Scholar
  24. 24.
    S. John, Phys. Rev. Lett. 58, 2486 (1987)CrossRefADSGoogle Scholar
  25. 25.
    R.W. Boyd, D.J. Gauthier, A.L. Gaeta, A.E. Willner, Phys. Rev. A 71, 023801 (2005)CrossRefADSGoogle Scholar
  26. 26.
    R.W. Boyd, N.N. Lepeshkin, P. Zerom, Laser Phys. 15, 1389 (2005)Google Scholar
  27. 27.
    C.M. Bowden, G.P. Agrawal, Phys. Rev. A 51, 4132 (1995)CrossRefADSGoogle Scholar
  28. 28.
    D. Dahan, G. Eisenstein, Opt. Express 13, 6234 (2005)CrossRefADSGoogle Scholar
  29. 29.
    J. Yao, G.P. Agrawal, P. Gallion, C.M. Bowden, Opt. Commun. 119, 246 (1995)CrossRefADSGoogle Scholar
  30. 30.
    W.W. Chow, S.W. Koch, Semiconductor-Laser Fundamentals (Springer, 1999)Google Scholar
  31. 31.
    R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, 2003)Google Scholar
  32. 32.
    S.L. Chuang, Physics of Optoelectronics Devices (Wiley Interscience, 1995)Google Scholar
  33. 33.
    L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)CrossRefADSGoogle Scholar
  34. 34.
    R.S. Tucker, P.C. Ku, C.J. Chang-Hasnain, J. Lightwave Technol. 23, 4046 (2005)CrossRefGoogle Scholar
  35. 35.
    A. Yariv, Optical Electronics in Modern Communications, 5th edn. (University Press, Oxford, 1997)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations