Applied Physics B

, 85:575 | Cite as

Cross-talk in phase encoded volume holographic memories employing unitary matrices

  • X. Zhang
  • G. BergerEmail author
  • M. Dietz
  • C. Denz


The cross-talk noise in phase encoded holographic memories employing unitary matrices is theoretically investigated. After reviewing some earlier work in this area, we derive a relationship for the noise-to-signal ratio for phase-code multiplexing with unitary matrices. The noise-to-signal ratio rises in a zigzag way on increasing the storage capacity. Cross-talk is mainly caused by high-frequency phase codes. Unitary matrices of even orders have only one bad code, while unitary matrices of odd orders have four bad codes. The signal-to-noise ratios of all other codes can in each case be drastically improved by omission of these bad codes. We summarize the optimal orders of Hadamard and unitary matrices for recording a given number of holograms. The unitary matrices can enable us to adjust the available spatial light modulators to achieve the maximum possible storage capacity in both circumstances with and without bad codes.


Reference Beam Unitary Matrice Spatial Light Modulator Signal Beam Hadamard Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Shelby, J. Hoffnagle, G. Burr, C. Jefferson, M. Bernal, H. Coufal, R. Grygier, H. Günther, R. Macfarlane, G. Sincerbox, Opt. Lett. 22, 1509 (1997)ADSGoogle Scholar
  2. 2.
    L. d’Auria, J. Huignard, E. Spitz, IEEE Trans. Magn. 9, 83 (1973)CrossRefADSGoogle Scholar
  3. 3.
    C. Denz, G. Pauliat, G. Roosen, T. Tschudi, Opt. Commun. 85, 171 (1991)CrossRefADSGoogle Scholar
  4. 4.
    G. Rakuljic, V. Leyva, A. Yariv, Opt. Lett. 17, 1471 (1992)ADSGoogle Scholar
  5. 5.
    D. Psaltis, M. Levene, A. Pu, G. Barbastathis, K. Curtis, Opt. Lett. 20, 782 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    C. Denz, G. Pauliat, G. Roosen, T. Tschudi, Appl. Opt. 31, 5700 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    C. Alves, G. Pauliat, G. Roosen, Opt. Lett. 19, 1894 (1994)ADSGoogle Scholar
  8. 8.
    C. Denz, T. Dellwig, J. Lembcke, T. Tschudi, Opt. Lett. 21, 278 (1996)ADSGoogle Scholar
  9. 9.
    C. Denz, K.-O. Mueller, T. Heimann, T. Tschudi, IEEE J. Sel. Top. Quantum. Electron. 4, 832 (1998)CrossRefGoogle Scholar
  10. 10.
    G. Berger, C. Denz, S.S. Orlov, B. Phillips, L. Hesselink, Appl. Phys. B 73, 839 (2001)CrossRefADSGoogle Scholar
  11. 11.
    G. Berger, M. Stumpe, M. Hoehne, C. Denz, J. Opt. A 7, 567 (2005)ADSGoogle Scholar
  12. 12.
    X. Yang, Y. Xu, Z. Wen, Opt. Lett. 21, 1067 (1996)ADSGoogle Scholar
  13. 13.
    X. Zhang, G. Berger, M. Dietz, C. Denz, Opt. Lett. 31, 1047 (2006)CrossRefADSGoogle Scholar
  14. 14.
    C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1978 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    K. Curtis, G. Gu, D. Psaltis, Opt. Lett. 18, 1001 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    K. Curtis, D. Psaltis, J. Opt. Soc. Am. A 10, 2547 (1993)ADSGoogle Scholar
  17. 17.
    M. Bashaw, J. Heanue, A. Aharoni, J. Walkup, L. Hesselink, J. Opt. Soc. Am. B 11, 1820 (1994)ADSGoogle Scholar
  18. 18.
    Z. Wen, Y. Tao, Opt. Commun. 148, 11 (1998)CrossRefADSGoogle Scholar
  19. 19.
    H. Lee, Y. Kim, D. Han, B. Lee, J. Opt. Soc. Am. A 16, 563 (1999)ADSGoogle Scholar
  20. 20.
    H. Kim, Y.H. Lee, Opt. Lett. 29, 113 (2004)CrossRefADSGoogle Scholar
  21. 21.
    J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968)Google Scholar
  22. 22.
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Angewandte PhysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.TEDA Applied Physics SchoolNankai UniversityTianjinP.R. China

Personalised recommendations