Applied Physics B

, Volume 85, Issue 4, pp 585–589 | Cite as

Optic characteristics of Pr3+ doped NaY(MoO4)2 crystal

  • X. Lu
  • Z. You
  • J. Li
  • Z. Zhu
  • G. Jia
  • B. Wu
  • C. TuEmail author


The polarized absorption and emission spectra of Pr3+ ions in NaY(MoO4)2 single crystal were investigated. The standard and modified Judd–Ofelt theory have been applied to the measured optical absorption intensities to determine the spectroscopic parameters, including the Judd–Oflet intensity parameters Ωt (t=2,4,6), the radiative transition rates, branching ratios, and emission cross-sections for various excited levels of Pr3+ ions. In samples with Pr3+ ions concentration of 2.00×1020 cm-3, the excitation of the 1 D 2 manifold decays non-radiatively by the electric dipole–dipole transfer between Pr3+ neighbors. The good spectroscopic properties show the possible application of the Pr3+ doped NaY(MoO4)2 crystal as a solid-state laser.


Manifold Decay Curve Radiative Lifetime Spectroscopic Parameter Ofelt Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Brenier, J. Appl. Phys. 90, 232 (2001)CrossRefADSGoogle Scholar
  2. 2.
    B.P. Singh, K.K. Sharma, J.S. Minhas, J. Phys. C: Solid State Phys. 19, 6655 (1986)Google Scholar
  3. 3.
    F.B. Xiong, Z.D. Luo, Y.D. Huang, Appl. Phys. B 80, 321 (2004)CrossRefADSGoogle Scholar
  4. 4.
    E.V. Koporulina, N.I. Leonyuk, D. Hansen, K.L. Bray, J. Cryst. Growth 191, 767 (1998)CrossRefGoogle Scholar
  5. 5.
    M. Gaft, R. Reisfeld, G. Panczer, E. Uspensky, B. Varrel, G. Boulon, Opt. Mater. 13, 71 (1999)CrossRefGoogle Scholar
  6. 6.
    S. Kück, I. Sokólska, M. Henke, T. Scheffler, E. Osiac, Phys. Rev. B 71, 165112 (2005)CrossRefADSGoogle Scholar
  7. 7.
    A.A. Kaminskii, Laser Crystals, Springer Series in Optical Sciences, Vol. 14 (Springer, Berlin, 1981)Google Scholar
  8. 8.
    A.A. Kaminskii, L. Li, A.V. Butashin, V.S. Mironov, A.A. Pavyuk, S.N. Bagayev, K. Ueda, Japan. J. Appl. Phys. 36, L107 (1997)CrossRefGoogle Scholar
  9. 9.
    A.A. Kaminskii, Ann. Phys. (Paris) 16, 639 (1991)Google Scholar
  10. 10.
    R.G. Smart, J.N. Carter, A.C. Tropper, D.C. Hanna, S.T. Davey, S.F. Carter, D. Szebesta, Opt. Commun. 86, 337 (1991)CrossRefADSGoogle Scholar
  11. 11.
    R.G. Smart, D.C. Hanna, A.C. Tropper, S.T. Davey, S.F. Carter, D. Szebesta, Electron. Lett. 127, 1307 (1991)ADSGoogle Scholar
  12. 12.
    M. Malinowski, M.F. Joubert, B. Jacquier, Phys. Stat. Solidi A 140, K49 (1993)Google Scholar
  13. 13.
    F. Varsanyi, Appl. Phys. Lett. 19, 169 (1971)CrossRefGoogle Scholar
  14. 14.
    A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, A. Diening, Opt. Lett. 29, 2638 (2004)CrossRefADSGoogle Scholar
  15. 15.
    E. Osiac, E. Heumann, G. Huber, S. Kück, E. Sani, A. Toncelli, M. Tonelli, Appl. Phys. Lett. 82, 3832 (2003)CrossRefADSGoogle Scholar
  16. 16.
    J.Y. Allain, M. Monerie, H. Poignant, Electron. Lett. 27, 189 (1991)ADSGoogle Scholar
  17. 17.
    N.J. Stedman, A.K. Cheetham, P.D. Bttle, J. Mater. Chem. 4, 707 (1994)CrossRefGoogle Scholar
  18. 18.
    L.G. Sillén, H. Sundvall, Ark. Kemi, Mineral. Geol. 10, 17A (1943)Google Scholar
  19. 19.
    W.T. Carnall, P.R. Field, K. Rajnak, J. Chem. Phys. 49, 4424 (1968)CrossRefGoogle Scholar
  20. 20.
    B. Savoini, J.E. Muñoz-Santiuste, R. González, Phys. Rev. B 56, 5856 (1997)CrossRefADSGoogle Scholar
  21. 21.
    L.D. Merkle, B. Zandi, R. Moncorge, Y. Guyot, H.R. Verdun, B. McIntosh, J. Appl. Phys. 79, 1849 (1996)CrossRefADSGoogle Scholar
  22. 22.
    S. Pinelli, S. Bigotta, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, Opt. Mater. 25, 91 (2004)CrossRefADSGoogle Scholar
  23. 23.
    M. Inokuti, F. Hirayama, J. Chem. Phys. 43, 1978 (1965)CrossRefGoogle Scholar
  24. 24.
    A. Mendez-Blas, M. Rico, V. Volkov, C. Cascales, C. Zaldo, C. Coya, A. Kling, L.C. Alves, J. Phys.: Condens. Matter 16, 2139 (2004)CrossRefADSGoogle Scholar
  25. 25.
    X.A. Lu, Z.Y. You, J.F. Li, Z.J. Zhu, G.H. Jia, B.C. Wu, C.Y. Tu, unpublishedGoogle Scholar
  26. 26.
    P. Goldner, F. Auzel, J. Appl. Phys. 89, 7972 (1996)CrossRefADSGoogle Scholar
  27. 27.
    A.A. Kornienko, A.A. Kaminskii, E.B. Dunina, Phys. Stat. Solidi B 157, 267 (1990)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • X. Lu
    • 1
    • 2
  • Z. You
    • 1
  • J. Li
    • 1
  • Z. Zhu
    • 1
  • G. Jia
    • 1
  • B. Wu
    • 1
  • C. Tu
    • 1
    Email author
  1. 1.Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFujianP.R. China
  2. 2.Graduated School of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations