Photoacoustic system for on-line process monitoring of hydrogen sulfide (H2S) concentration in natural gas streams

Abstract

A dual-channel hydrogen sulfide (H2S) concentration measuring system based on photoacoustic spectroscopy is described. The system uses a single-mode, fiber-coupled, room-temperature-operated, telecommunication-type diode laser with a wavelength of 1574.5 nm and an output optical power of 40 mW and two identical resonant photoacoustic cells to achieve minimum detectable H2S concentration at 0.5 ppm (3σ) in both measured natural gas streams. The instrument features excellent long-term stability and unattended automatic on-line monitoring even when operated in harsh industrial environments. The potentially deteriorating effect of temporal variation in the natural gas composition was successfully suppressed by applying a spectral baseline correction method and by introducing an additional measurement phase with measurement of a reference gas from which the H2S has been removed. Various tests of the instrument demonstrate its reliable performance and suitability for process-control application.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. Dupuit, A. Dandrieux, P. Kvapil, J. Olliver, G. Dusserre, O. Thomas, Analysis 28, 966 (2000)

    Article  Google Scholar 

  2. 2.

    L. Huber, H. Obbens, J. Chromatogr. A 349, 465 (1985)

    Article  Google Scholar 

  3. 3.

    Z.Y. Zhang, H.J. Jiang, Z. Xing, X.R. Zhang, Sens. Actuators B 102, 155 (2004)

    Article  Google Scholar 

  4. 4.

    F. Vandecruys, E. Brauns, W. Engelen, F. De Schutter, J. Vangrunderbeek, Solid State Ionics 112, 95 (1998)

    Article  Google Scholar 

  5. 5.

    M. Szakáll, Z. Bozóki, Á. Mohácsi, A. Varga, G. Szabó, Appl. Spectrosc. 58, 792 (2004)

    Article  ADS  Google Scholar 

  6. 6.

    S. Schilt, L. Thévenaz, M. Niklés, L. Emmenegger, C. Hüglin, Spectrochim. Acta A 60, 3259 (2004)

    Article  Google Scholar 

  7. 7.

    A. Bohren, M.W. Sigrist, Infrared Phys. Technol. 38, 423 (1997)

    Article  ADS  Google Scholar 

  8. 8.

    S. Schilt, J.-P. Besson, L. Thévenaz, Appl. Phys. B 82, 319 (2006)

    Article  ADS  Google Scholar 

  9. 9.

    A. Veres, Z. Bozóki, Á. Mohácsi, M. Szakáll, G. Szabó, Appl. Spectrosc. 57, 900 (2003)

    Article  ADS  Google Scholar 

  10. 10.

    G.-C. Liang, H.-H. Liu, A.H. Kung, A. Mohácsi, A. Miklós, P. Hess, J. Phys. Chem. A 104, 10179 (2000)

    Article  Google Scholar 

  11. 11.

    Z. Bozóki, M. Szakáll, Á. Mohácsi, G. Szabó, Zs. Bor, Sens. Actuators B 91, 219 (2003)

    Article  Google Scholar 

  12. 12.

    A.H. Veres, F. Sarlós, A. Varga, G. Szabó, Z. Bozóki, G. Motika, J. Gyapjas, Spectrosc. Lett. 38, 377 (2005)

    Article  Google Scholar 

  13. 13.

    L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian, K. Chance, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  14. 14.

    L. Lechuga-Fossat, J.M. Flaud, C. Camy-Peyret, Mol. Phys. 61, 23 (1987)

    Article  ADS  Google Scholar 

  15. 15.

    L.R. Brown, J. Quantum Spectrosc. Radiat. Transf. 96, 251 (2005)

    Article  ADS  Google Scholar 

  16. 16.

    J.-P. Besson, S. Schilt, L. Thévenaz, Spectrochim. Acta A 63, 899 (2006)

    Article  Google Scholar 

  17. 17.

    A. Miklós, P. Hess, Z. Bozóki, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  18. 18.

    http://www.srsys.com/downloads/PDFs/ApplicationNotes/lia.pdf

  19. 19.

    Patent pending, Hungarian Patent Appl. No. P0500654

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. Bozóki.

Additional information

PACS

82.80.Kq; 42.62.Fi; 07.07.Df

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varga, A., Bozóki, Z., Szakáll, M. et al. Photoacoustic system for on-line process monitoring of hydrogen sulfide (H2S) concentration in natural gas streams. Appl. Phys. B 85, 315–321 (2006). https://doi.org/10.1007/s00340-006-2388-6

Download citation

Keywords

  • Microphone Signal
  • Magnetic Valve
  • Distribute Feedback Diode Laser
  • Single Emission Mode
  • Photoacoustic System