Applied Physics B

, Volume 85, Issue 4, pp 557–564 | Cite as

A femtosecond stimulated raman spectrograph for the near ultraviolet

  • S. Laimgruber
  • H. Schachenmayr
  • B. Schmidt
  • W. Zinth
  • P. Gilch


The design of a femtosecond stimulated Raman spectrograph (FSRS) optimized for measurements in the near UV is presented. It features a 387.5 nm Raman pump pulse causing a (pre-)resonance enhancement for molecular absorbing in the UV. As many photoreactive molecules absorb there, the set-up is particularly suited to study photochemical reactions. The 387.5 nm pulses are generated by frequency adding two femtosecond laser pulses with linear chirps, equal in magnitude but opposite in sign. This results in intense and spectrally narrow (∼10 cm-1) Raman pump pulses which allow recording of Raman spectra with a good spectral resolution. The power of the spectrograph to trace ultrafast photoreactions is illustrated by measurements on the photochemistry of o-nitrobenzaldehyde.


Raman Resonance White Light Continuum Raman Probe Spontaneous Raman Scattering Raman Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.T.J. Nibbering, H. Fidder, E. Pines, Ann. Rev. Phys. Chem. 56, 337 (2005)CrossRefADSGoogle Scholar
  2. 2.
    M. Yoshizawa, M. Kurosawa, Phys. Rev. A 61, 013808–1 (1999)CrossRefADSGoogle Scholar
  3. 3.
    D.W. McCamant, P. Kukura, R.A. Mathies, J. Phys. Chem. A 107, 8208 (2003)CrossRefGoogle Scholar
  4. 4.
    S.M. Jin, Y.J. Lee, J. Yu, S.K. Kim, Bull. Korean. Chem. Soc. 25, 1829 (2004)CrossRefGoogle Scholar
  5. 5.
    D.W. McCamant, P. Kukura, R.A. Mathies, Appl. Spectrosc. 57, 1317 (2003)CrossRefADSGoogle Scholar
  6. 6.
    S.Y. Lee, D. Zhang, D.W. McCamant, P. Kukura, R.A. Mathies, J. Chem. Phys 121, 3632 (2004)CrossRefADSGoogle Scholar
  7. 7.
    P. Kukura, D.W. McCamant, S. Yoon, D.B. Wandschneider, R.A. Mathies, Science 310, 1006 (2005)CrossRefADSGoogle Scholar
  8. 8.
    D.W. McCamant, P. Kukura, S. Yoon, R.A. Mathies, Rev. Sci. Instrum. 75, 4971 (2004)CrossRefADSGoogle Scholar
  9. 9.
    M. Yoshizawa, H. Aoki, H. Hashimoto, Bull. Chem. Soc. Japan 75, 949 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Laimgruber, W.J. Schreier, T. Schrader, F. Koller, W. Zinth, P. Gilch, Angew. Chem. Int. Edit. 44, 7901 (2005)CrossRefGoogle Scholar
  11. 11.
    G. Ciamician, P. Silber, Chem. Ber. 35, 2040 (1901)Google Scholar
  12. 12.
    R.W. Yip, D.K. Sharma, Res. Chem. Intermediat. 11, 109 (1989)Google Scholar
  13. 13.
    R. Huber, H. Satzger, W. Zinth, J. Wachtveitl, Opt. Commun. 194, 443 (2001)CrossRefADSGoogle Scholar
  14. 14.
    M. Ziolek, R. Naskrecki, J. Karolczak, Opt. Commun. 241, 221 (2004)CrossRefADSGoogle Scholar
  15. 15.
    F. Raoult, A.C.L. Boscheron, D. Husson, C. Sauteret, A. Modena, V. Malka, F. Dorchies, A. Migus, Opt. Lett. 23, 1117 (1998)ADSGoogle Scholar
  16. 16.
    E.B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969)CrossRefADSGoogle Scholar
  17. 17.
    J.V. Rudd, G. Korn, S. Kane, J. Squier, G. Mourou, Opt. Lett. 18, 2044 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Zhang, T. Yagi, T. Arisawa, Appl. Opt. 36, 3393 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    SNLO v33, SNLO nonlinear optics code available from A.V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423Google Scholar
  20. 20.
    M.J. Tauber, R.A. Mathies, X.Y. Chen, S.E. Bradforth, Rev. Sci. Instrum. 74, 4958 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S. Laimgruber
    • 1
  • H. Schachenmayr
    • 1
  • B. Schmidt
    • 1
  • W. Zinth
    • 1
  • P. Gilch
    • 1
  1. 1.Department für PhysikLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations