Skip to main content

Bose–Einstein condensates in microgravity

Abstract

We report the current status of our cooperative effort to realize a 87Rb Bose–Einstein condensate in microgravity. Targeting the long-term goal of studying cold quantum gases on a space platform, we currently focus on the implementation of an experiment at the ZARM drop tower in Bremen. Fulfilling the technical requirements for operation in this facility, the complete experimental setup will fit in a volume of less than 1 m3 with a total mass below 150 kg and a total power consumption of the order of 625 W. The individual parts of the setup, in particular the ultra-compact laser system as a critical component, are presented. In addition, we discuss a first demonstration of the mechanical and frequency control stability of the laser modules. On the theoretical side, we outline the non-relativistic description of a freely falling many-particle system in the rotating frame of the Earth. In particular, we show that the time evolution of a harmonically trapped, collisionally interacting degenerate gas of bosons or fermions is as simple in an accelerated, rotating frame of reference as in an inertial frame. By adopting a co-moving generalized Galilean frame, we can eliminate inertial forces and torques. This leads to important simplifications for numerical simulation of the experiment.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B.P. Anderson, Phys. Rev. A 63, 023404 (2001)

    Article  ADS  Google Scholar 

  2. 2.

    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  3. 3.

    K. Bongs, K. Sengstock, Rep. Prog. Phys. 67, 907 (2004)

    Article  ADS  Google Scholar 

  4. 4.

    I. Bialynicki-Birula, Z. Bialynicka-Birula, Phys. Rev. A 65, 063606 (2002)

    Article  ADS  Google Scholar 

  5. 5.

    S. Bize, P. Laurent, C.R. Physique 5, 829 (2004)

    Article  ADS  Google Scholar 

  6. 6.

    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  7. 7.

    C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 79, 1170 (1997)

    Article  ADS  Google Scholar 

  8. 8.

    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  9. 9.

    J.F. Dobson, Phys. Rev. Lett. 73, 2244 (1994)

    Article  ADS  Google Scholar 

  10. 10.

    A. Fetter, J. Walecka, Quantum Theory of Many-particle Systems (McGraw-Hill, Boston, MA, 1971)

  11. 11.

    W. Greiner, Mechanik, Teil 2, 5th edn. (Verlag Harri Deutsch, Thun, 1989)

  12. 12.

    W. Hänsel, P. Hommelhoff, T.W. Hänsch, J. Reichel, Nature 413, 498 (2001)

    Article  ADS  Google Scholar 

  13. 13.

    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, in Proc. International School of Physics – Enrico Fermi, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999), pp. 67–176

  14. 14.

    W. Kohn, Phys. Rev. 123, 1242 (1961)

    Article  ADS  MATH  Google Scholar 

  15. 15.

    S. Kraft, A. Deninger, C. Trück, J. Fortágh, F. Lison, C. Zimmermann, Laser Phys. Lett. 2, 71 (2005)

    Article  Google Scholar 

  16. 16.

    A.E. Leanhardt, Science 301, 1513 (2003)

    Article  ADS  Google Scholar 

  17. 17.

    K.G. Libbrecht, J.L. Hall, Rev. Sci. Instrum. 64, 2133 (1993)

    Article  ADS  Google Scholar 

  18. 18.

    G. Nandi, R. Walser, E. Kajari, W.P. Schleich, unpublished

  19. 19.

    H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001)

    Article  ADS  Google Scholar 

  20. 20.

    T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, G.M. Tino, Eur. Phys. J. D 22, 279 (2003)

    ADS  Google Scholar 

  21. 21.

    J. Reichel, W. Hänsel, T.W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999)

    Article  ADS  Google Scholar 

  22. 22.

    G. Schmid, Phys. Rev. A 15, 1459 (1977)

    Article  ADS  Google Scholar 

  23. 23.

    J.H. Shirley, Opt. Lett. 7, 537 (1982)

    ADS  Article  Google Scholar 

  24. 24.

    G. Wasik, W. Gawlik, J. Zachorowski, W. Zawadzki, Appl. Phys. B 75, 613 (2002)

    Article  ADS  Google Scholar 

  25. 25.

    A.C. Wilson, J.C. Sharpe, C.R. McKenzie, P.J. Manson, D.M. Warrington, Appl. Opt. 37, 4871 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Vogel.

Additional information

PACS

03.75.-b; 03.75.Kk; 32.80.Pj

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vogel, A., Schmidt, M., Sengstock, K. et al. Bose–Einstein condensates in microgravity. Appl. Phys. B 84, 663–671 (2006). https://doi.org/10.1007/s00340-006-2359-y

Download citation

Keywords

  • 87Rb
  • Einstein Condensate
  • MOPA
  • Drop Tower
  • Master Laser