Advertisement

Applied Physics B

, Volume 85, Issue 4, pp 631–636 | Cite as

Effects of mass difference on pressure-dependent emission characteristics in laser-induced plasma spectroscopy

  • K.H. KurniawanEmail author
  • T.J. Lie
  • M. Pardede
  • R. Hedwig
  • M.M. Suliyanti
  • S.N. Abdulmadjid
  • Y.I. Lee
  • K. Kagawa
  • M.O. Tjia
Article

Abstract

A comprehensive experimental study was performed to demonstrate the effects of ambient air pressure on the emission characteristics of analyte elements in a variety of host materials in laser-induced plasma spectroscopy in low ambient air pressures. It was shown that the pressure-dependent characteristics of the emission lines are generally influenced by host elements when significant mass difference exists between the analyte and the host elements. Further investigation on the time profiles of the spatially integrated emission intensities reveal the important interplay among the dynamical factors associated with the mass-difference effect, which effectively influence the shock wave excitation process and hence the related emission intensities. The result of this study also indicates the need of proper control of time delay for the detection of maximum emission intensity in the cases considered.

Keywords

Shock Wave Emission Intensity Mass Difference Laser Induce Breakdown Spectroscopy Gate Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Brech, L. Cross, Appl. Spectrosc. 16, 59 (1962)Google Scholar
  2. 2.
    T.R. Loree, L.J. Radziemski, Plasma Chem. Plasma Proc. 1, 271 (1981)CrossRefGoogle Scholar
  3. 3.
    L.J. Radziemski, T.R. Loree, Plasma Chem. Plasma Proc. 1, 281 (1981)CrossRefGoogle Scholar
  4. 4.
    J.J. Laserna, N. Omenetto (Eds.), Spectrochim. Acta B, 60, 877 (2005)Google Scholar
  5. 5.
    S.H. Jeong, R. Greif, R.E. Russo, J. Phys. D: Appl. Phys. 32, 2578 (1999)CrossRefADSGoogle Scholar
  6. 6.
    R. Krasniker, V. Bulatov, I. Schechter, Spectrochim. Acta B 56, 609 (2001)CrossRefGoogle Scholar
  7. 7.
    B. Salle, J.L. Lacour, E. Vors, P. Vichet, S. Maurice, D.A. Cremers, R.C. Wiens, Spectrochim. Acta B 59, 1413 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, Spectrochim. Acta B 57, 701 (2002)CrossRefGoogle Scholar
  9. 9.
    Y.I. Lee, K. Song, H.K. Cha, J.M. Lee, M.C. Park, G.H. Lee, J. Sneddon, Appl. Spectrosc. 51, 959 (1997)CrossRefADSGoogle Scholar
  10. 10.
    K.H. Kurniawan, K. Kagawa, Appl. Spectrosc. Rev. 41, 99 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • K.H. Kurniawan
    • 1
    Email author
  • T.J. Lie
    • 1
  • M. Pardede
    • 1
  • R. Hedwig
    • 1
  • M.M. Suliyanti
    • 2
  • S.N. Abdulmadjid
    • 3
  • Y.I. Lee
    • 4
  • K. Kagawa
    • 5
  • M.O. Tjia
    • 6
  1. 1.Research Center of Maju Makmur Mandiri FoundationJakarta BaratIndonesia
  2. 2.Graduate Program in Opto Electrotechniques and Laser Applications, Faculty of EngineeringThe University of IndonesiaJakartaIndonesia
  3. 3.Department of Physics, Faculty of Mathematics and Natural SciencesSyiah Kuala UniversityBanda AcehIndonesia
  4. 4.Physics DepartmentChonbuk National UniversityChonjuKorea
  5. 5.Department of PhysicsFaculty of Education and Regional StudiesFukuiJapan
  6. 6.Department of Physics, Faculty of Mathematics and Natural SciencesBandung Institute of TechnologyBandungIndonesia

Personalised recommendations