Applied Physics B

, Volume 85, Issue 4, pp 625–629 | Cite as

Size measurement of nanoparticles using the emission intensity distribution of laser-induced plasma

  • E.C. JungEmail author
  • J.-I. Yun
  • J.I. Kim
  • Y.J. Park
  • K.K. Park
  • T. Fanghänel
  • W.H. Kim


A two-dimensional optical imaging method is presented for monitoring the laser-induced breakdown events of aqueous nanoparticles. The method is based on measuring the light intensity distribution of plasma from spatially resolved breakdown events. The number of laser breakdown events as a function of the emission intensity follows the Gaussian distribution and its full-width at a half-maximum appears in direct correlation with the particle size. Hence the particle size can be determined by measuring the plasma emission intensity distribution. Calibration of the method is carried out with reference polystyrene particles dispersed in water. Application is demonstrated for measuring bentonite colloidal particles of different sizes in groundwater.


Laser Beam Bentonite Emission Intensity Incident Laser Beam Light Intensity Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.I. Kim, Mater. Res. Soc. Bull. 19, 47 (1994)Google Scholar
  2. 2.
    J.I. Kim, P. Zeh, B. Delakowitz, Radiochim. Acta 58/59, 147 (1992)Google Scholar
  3. 3.
    M. Filella, J. Zhang, M.E. Newman, J. Buffle, Colloid Surf. A 120, 27 (1997)CrossRefGoogle Scholar
  4. 4.
    T. Kitamori, K. Yokose, K. Suzuki, T. Sawada, Y. Gohshi, Jpn. J. Appl. Phys. 27, L983 (1988)CrossRefGoogle Scholar
  5. 5.
    F.J. Scherbaum, R. Knopp, J.I. Kim, Appl. Phys. B 63, 299 (1996)Google Scholar
  6. 6.
    T. Kitamori, K. Yokose, M. Sakagami, T. Sawada, Jpn. J. Appl. Phys. 28, 1195 (1989)CrossRefGoogle Scholar
  7. 7.
    T. Bundschuh, R. Knopp, J.I. Kim, Colloid Surf. A 177, 47 (2001)CrossRefGoogle Scholar
  8. 8.
    S. Izumida, K. Onishi, M. Saito, Jpn. J. Appl. Phys. 37, 2039 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Saito, S. Izumida, K. Onishi, J. Akazawa, Jpn. J. Appl. Phys. 85, 6353 (1999)ADSGoogle Scholar
  10. 10.
    H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, Y-M. Hsueh, S. Izumi, Jpn. J. Appl. Phys. 31, 1514 (1992)CrossRefGoogle Scholar
  11. 11.
    T. Ajiro, H. Fujimori, T. Matsui, S. Izumi, Jpn. J. Appl. Phys. 31, 2760 (1992)CrossRefGoogle Scholar
  12. 12.
    H. Fujimori, T. Matsui, T. Ajiro, K. Yokose, US-Patent 5316983 (1994)Google Scholar
  13. 13.
    T. Bundschuh, W. Hauser, J.I. Kim, R. Knopp, F.J. Scherbaum, Colloid Surf. A 180, 285 (2001)CrossRefGoogle Scholar
  14. 14.
    C. Walther, C. Bitea, W. Hauser, J.I. Kim, F.J. Scherbaum, Nucl. Instrum. Methods Phys. Res. B 195, 374 (2002)CrossRefADSGoogle Scholar
  15. 15.
    W. Hauser, H. Geckeis, J.I. Kim, T. Fierz, Colloid Surf. A 203, 37 (2002)CrossRefGoogle Scholar
  16. 16.
    H. Geckeis, T. Schäfer, W. Hauser, T. Rabung, T. Missana, C. Degueldre, A. Möri, J. Eikenberg, T. Fierz, W.R. Alexander, Radiochim. Acta 92, 765 (2004)CrossRefGoogle Scholar
  17. 17.
    T. Missana, M. Garcia-Gutierrez, U. Alonso, Appl. Clay Sci. 26, 137 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Walther, H.R. Cho, T. Fanghänel, Appl. Phys. Lett. 85, 6329 (2004)CrossRefADSGoogle Scholar
  19. 19.
    M. Plaschke, T. Schäfer, T. Bundschuh, T. Ngo Mahn, R. Knopp. H. Geckeis, J.I. Kim, Anal. Chem. 73, 4338 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • E.C. Jung
    • 1
    Email author
  • J.-I. Yun
    • 2
  • J.I. Kim
    • 2
  • Y.J. Park
    • 1
  • K.K. Park
    • 1
  • T. Fanghänel
    • 2
  • W.H. Kim
    • 1
  1. 1.Korea Atomic Energy Research InstituteNuclear Chemistry Research DivisionYuseongKorea
  2. 2.Institut für Nukleare EntsorgungForschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations